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PREFACE.

My object in the fllawing troatiee is to appdy to the Kinetw
Thenry of Gaws a methoad of anaiysis diferent from that
generally emploved. It has heen treatesd always on A certaun
fundamental assumption, namely, that the moloenbs of a gus
are. as regards their mlative motion, independent of one
another, As a COnSgenor, ®e may sav as the cxpression,
of that independenee, the law of distribution of mementa
assumas the exponential form %% and w0 fir as ooteorns
translation veloeities,

W e )
G=Zmin? o vt gty
.

m being maass, and w, v, w component velwithe From this
independence and from this forra of @ are deduced Boltzmann's
theorems, namely the H theorem, apd that of the equality
of mean kinetic energy for vach degree of froedom.

I propose to give to @ the more general form of a quadratie
fupction, namely

Q=Smint4o® 4w+ Z8h (w4 o' 4w i

Here b is & negative function of the distanee r at the instant
considered between the two molecnles whose vebwitivs are
u, w, vte., which function is inappreciable exevpt for very small
values of r. 1 shall endeavour to prove in Chapters IV, V.
that without the b eoeflicients the motion cannot be statiousry.
It has been proved abundantly that, nssmonisg the independence,
the motion is stationary with the usual form of . I question
the axism, not the demonstration.

The eonsequence of atthibnting to @ the proposed new form
1%, that mwolecules near to cach other have oo average a moton
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in the same direction. They tend to form streams. That
result, if it can be established, is worth investigation.

For ordinary gases under ovdinary conditions the b co-
efficients arc probably very small, and their cffect negligible
in such investigations as those of Tait and Boltzmann con-
cerning diffusion, viscosity, ete. But I think that the law
€@ in its altered form will express the state of the system
without restriction as to density, except as follows. A physical
limit there must be, when the gas liquefies under pressure,
if not before. For it will not be contended that tho dis-
tribution of momenta among the molecules of the liquefied
gas is represented by the samoe exponential form as in the
gascous condition. An analytical limit there is, when ¢ in
its altered form ceases to be necessarily positive, that is when
the determinant of the cocfficients ceases to be positive. It
can be shown that this determinant does diminish as density
increases, or temperaturc diminishes. But I have not cal-
culated its value. It is therofore no more than a conjecture,
though perhaps a plausible conjecture, that the vanishing of
the determinant may coincide with the physical chango in
the substance.

It appears to me that tho law of equality of mean kinctie
energy for each degree of freedom cannot be roconciled with
my proposed form of @; that in fact the law holds only for
the limiting case of a vory rarc gas.

It is no light thing to question a conclusion maintained
by Boltzmann, if indced he does maintain this coneclusion for
all substances, or for all gases irrospective of density. I can
but state the objections to this theorem, and to a certain aspoct
of the I theorcm, as thoy appear to me. The reader will
judge what weight is to be attributed to them.

S. H. BURBURY.
10 May, 1899.
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CHAPTER L

OUTLINE OF THE THEORY.

1. A 6as according to the Kinetie Theory consista of a
great number of moleculen in mpid motion. And the object of
the theory is to explain on this hypothesis cvrtawn of the
physical properties of gases.

Any quantity of gas which can be isolated for the purpose
of experiments is to be regarded as containing a number
of molecules practically infinite. It is not possible to contral
or to observe the motions of mdividual melecnles But the
theory assumes that such motion 13 sabject to the wsual
dypamical laws Also that of the gas as an aggregate of
molecules, be at rest, no dissipation of energy takes place

2 A molecule may consist of cne or more than one atom
according to the chemical cunstitution of the substance t
which it belongs. It may be that hereafter we «hall be able
explain on dynamical principles the chemical relations of atoms
as constituent parts of a molecule, and of moleenles inter se.
And some progress bas been made in this direction. At
present the theory is concerned not with the chemical pro-
perties, but with those properties of gases which may change
without any change taking place in the chenucal composition
of the gas: for instance, denwity, pressure, and temperature.
And as depending on these latter, it 15 concerned with the
pbenomena of viscosity, diffusion, and conduction of heat or
electricity.

B 1

BRT




KINETIC THEORY OF GASES [cHAP.

11

3 A molecule wonving as such, one and indivisible, has
thrve degrees of freedom in respect of its motion of translation
in space.  And it may conceivably bave three other degrees of
freadom, namely, motise of rotation about its principal axes.
In respect of its internal constitutiun it may have many degrees
of freedom, but we know nothing of the internal constitution
of molecules except what chemists tell ue.

4 Apy finite quantity of gas may, if protected from dis-
turbance from without, retain for an indefinite time un-
impaired its physical properties, for instance, its pressure and
temperature, and also its chemical eoustitution. If therefore
these properties are not changing, and are to be explained
on dynamical principles as resulting from the motion of the
meolecules, such motion must be stationary motion.

OF HOMOGENEITY.

8. The gas, or system of molecules, may be in a certain
sense ve. if we regard all the molecules at any instant within
a finite space, homogeneous For instance, a cubie centi-
metre of air has sensibly the <ame properties in all respects
whether taken from one part of a horizontal table or from
another part. It 1s true that it will geperally not have in all
respects the same properties if taken from near the floor, as if
taken from near the ceiling. It will, namely, be heavier, ie.
will contain more molecules, in the former than in the latter
case. That is because the air in the room is in a field of
uniform force, gravity. But this force will not necessarily
affect any other property of the gas, at all events under
ordinary oonditions to which it is subject.

If we assume the infinite divisibility of matter, or that any
space, however infinitely small, contains an infinite number of
molecules, the condition of homogeneity may apply to the
molecules eontaived in any such infinitely small space. We
may in that case say without ambiguity that the gas at a
point P has the same properties as at another point Q.




L] OUTLINE OF THE THEORY. 3

6. Modern physicists however teach us that the molecules
bave finite dimensions, or that there is a finite distance, how-
ever small, within which two moleculss ecasnot approach each
other. That being the case. the homogeneity can be assrted
only in the following form. If we conwder & quantity of gus
within a sphere of radius r described about P as oentre,
and a quantity within an equal sphere described about ¢ as
centre, either sphere containing a number of tuoleculos practi-
cally infinite, then r being within certain himits the first
quantity has the same physical properties as the s,

OF THE DENSITY OF A Gas.

7. The same doctrine of the finite size of molecules causes
considerable difficulty in defining certain other properties of
the system, for instance the density.

The density of the gas is usually defined to be the sum of
the masses of all the molecules in unit of volume, But if the
molecules have finite dimensions, that may make the density
at any point relative to that at nther puints depend on the nnit
arbitrarily chosen. It is not therefire a complete detinition
We can however say, and it ix generally sathcient for onr
purpose,

(a) If there be N molecules within a definite volume N,
the average density at any point within Sis .V 8.

(b) Again, we can define the density at a point which
answers some general description, or ax we may call it the relative
density. For instance, suppose f to be a eontinuous funetion
of the position of a point, then we may define the density
with reference to f, as for instance at point~s where /=0,
provided that there exists an infinite pumber f such points.
For consider any n of them, and about vach a small sphere
of volume w. Let ne be the unit of volume. Let N be
the number of moleenles supposed of equal mass which. or the
centres of inertia of which, are within some one or other of
these small spheres. Then the density where f=01s N ne in
the limit, as » is increased indefinitely, ne remaining constant.

1 Y
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4 KINETIC THEORY OF GAVER [rHAP.

Tos detine density af 2 poit. 88 8 fanction of the cvordinates
of that peant, 18 with finite molecules a more dificult matter.

Let = be = line of any arbitrary fixed length. As a first
step to our definition. let ns say the density at a point P, or
£ y ¢ w the nnmber of molecules, supposed of equal mass, con-
tainedt within a sphere of radius r deseribed about P as centre,
divided by the volume of that sphere. If n be that number, p
the density, then our definition is

3n
pat P= ol

But that makes p generally a function of r as well as of
x y.r. How are we to get rid of v/ Boltzmann and other
writers after or before him would complete the detinition thus,
dn
dorr®
ever infinitely small being assumed, for this purpose only, to
contaln an infinitely great number of molecules.  This defi-
pitien does pot materially differ from that which we should
give if our gus instead of consisting of diserete molecules, were
a eontinuous finid, any portion of which may be conceived as
infinitely subdivided

pat P = when v Beromes tnfindely small, any space how-

But it i meonststent with the teaching of these same
writers, who maintain that molecules have finite dimensions,
that in fact we can ascertain limits between which those dimen-
sions must L= It may be admitted that no ill consequences
have wet arisen from the use of this inconsistent definition,
and if it be either necessary or useful, the inconsistency need
not be regarded a5 a serious objection. Inconsistency may
indeed be an advantage in mathematics as it often is in polities.
It may be admitted also that this definition eccurs to us by
instinct when we are asked to define demsity at & point. That
may be becanse we have pamed through a former state of
existence In which matter was supposed to be continuous, and
therefore the definition strictly accurate. And our instinctive
resort o1t 1s due to unconseious memory of that former state.

8 We may avoid the difficalty by making a further
assurnption with regard to the properties of our system. Let
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ks

r, be the mdius of & sphere dewmibed abont P as centrs which
contains 3 very great number of molecules. Lot r, be greater
than r, in a fimte ratio t & twiae w be the pumber of
molecules within a sphere of radins ¢ Now et us assume, as
a property of oar system, that fur all valaes of 7 betwenn 7, and
i, the ratio s is coustant. Then we may define o at # as
3a . c

4oy 1MDZ this constant value of » .

This method implies vither that the state of vur gas does
uot change from point to point i space, or that it changes
so gradually as to be sensbiy constant throaghout the space
between the spheres of radiz r, and r,.

9. Assuming that the state of wur gas changes so mapudly
in space that we cannot make the above assumption. and
assuming that we scruple to base our definlivg on an asertion
which we elsewhere contradiet, 1t seems to me that the ex-
pression “density at a pent’ or Cpumber of moleeules per
unit of volume at a poant” has of itselfl no meaning whatever
when the molecules are of finite dimensivns, but a meaning may
be given it in an arbitrary way.  One way would be to take an
arbitrarily chosen volume for the unit I would suggest the
following as the best form of detfinition Let 7" be s contingeus
positive function of r which 1s equal to unity for all values of r

less than a certain distance a, sud for which ;‘i 15 always

-
pegative when r>a, and such that j rPrdr 1s a comvergent
L]

series, Then define the density at F as Znif r being measured
from P, m being the mass of a molecule and the summarion
mncluding all molecules in space.  For with woleeules of finite
dimensions, density at P ouiust depend apon the distances of
many molecnles from P, but cannot e afected by those whose
distances from P are very great.

THE STREAM VELOCITY,

10. As with the demsity, so precisely the same difficulty
presents itself if we try to define the streum velunity, or in
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Professor Tait’s langtage, mass motion, of the gas in given
direction at any point P. M. Ladislas Natanson in a paper,
to which I shall refer later, makes use of this function
without giving any definition of it except by calling it
“vitesse moyenne ou.apparente.” He is however, as I under-
stand, willing to assume that any infinitely small space contains
an infinite number of molecules. As the same difficulty arises,
80 the same solution mutatis mutandis may be resorted to, as in
the case of density.

OF THE PRESSURE OF A GAS.

11. The motion which we attribute to our molecules cannot,
assuming the gas to be at rest relatively to the surrounding
space, be related to any particular direction in space. That is,
at or near any point P there are on the average of time as
many molecules moving with given velocity in any one direction
as in any other. For if otherwise the pressure of the gas would,
as shown by the next paragraph, be unequal in different
directions, which is known not to be the case if the gas be at
rest.

12. Assuming the property mentioned in the last paragraph,
and assuming the distribution of momentum among the mole-
cules to be known, we can calculate the quantity of momentum
transferred across an imaginary plane within the gas per unit
of area and time. Let m be the mass of a molecule, p the
number of molecules per unit of volume, to be defined as above
explained, and pf (V) dV the number per unit of volume whose
velocity of translation lies between V and V' +dV. Then by
our assumption the number of these last whose direction of
motion makes with the normal to the plane angles between
0 and 0 + df is

$p.f(V)dV sin 6d6.

Their velocity normal to the plane is V'cos 8. Therefore the
quantity of momentum normal to the plane transferred across
the plane in one direction per unit of area and time by
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molecules having velocity V... V+dV is

”

fmpV? f 2sin 0 cos? 0dO = ymp V.
0

And the quantity of momentum so transforred by all the
molecules is

e [ Ver(vyav

= 3mpV? suppose,

V73 being the mean value of V* for all the molecules.

13. If further the molecules exert on ono another no forees,
twice the quantity of momentum so transferred through unit of
area of the plane is the normal pressure of the gas por unit of
area of the plane. See Watson's Kinetic Theory of (uses,
second edition, pp. 56—358.

For we may suppose tho gas confined in a vertical eylinder
under a heavy moveable piston from which molecules striking
rebound as elastic bodies. Tho womentum normal to the buse
of the piston, d.e vertically upwards, which if it were an
imaginary plape would be transferred through it, is in fact,
the mass of the piston being very great, reversed, so that twice
that quantity is transferred to the piston, and tends to mako
the piston rise in the cylinder. That is, the piston recuives
per unit of area and time from the impacts of the molecules
momentum equal to jmp V? vertically upwards. It also nequires
by the action of gravity per unit of arca and time momentum
My vertically downwards, where g is the foree of gravity, and
M bears to the whole mass of the piston the samo ratio which
unit of area bears to the base of the piston,  For oquilibrium

Mg = ymp V3 = p, the pressure per unit of area.

If the impacts of the molecules be sufficiently numoerous
per unit of time the piston will remain sensibly at rest.

e
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KINKTIC THEORY OF GASKS, [cHap.

OF THE TEMPERATURE OF A GAR,

14. We have then in the absenco of intermolecular forces
p varies as p V3,
If the molecules do exert mutual forees on one another, the
above value of tho pressure iv nob accurate. But there are
gufficient reasons for believing that for ordinary gases under
ordinary conditions tho prossure is not materially affocted by
the intermolecular forces.  For such gasen therefore, accuratoly
or approximatoly,
p varies as p V4,
But for such gases, accuratoly or approximately, the laws of
Boyle and Charles hold good, whence p varies as pf, 6 denoting
the absolute temperature. 1t is thence inforred that, aceurntoly
or approximately, 8 varics as V*  And that statement woe
must accept provisionally, Temporature monsured  from the
absolute zero is represented by the mean square of the velocity
of translation. On this theory temperature is a quality which
cannot be attributed to a molecule, but only to an aggregate of
molecules.

OF INTERMOLECULAR FORCES,

16. It is however cortain that for sufficiontly donse gases
intermolecular forees do oxist, and we must now muke n further
assumption regarding them,  Wo shall assume, nameoly, that the
intermolecular force £ botwoeon two molocules

(1) Acts in tho line joining their centres of inertia, or
within very small limits of error may bo regarded ns so acting.

(2) Is a continuous function of the distance » botwoen
those centrey of inertia, which becomes evanescont for all values
of » exceoding a very small finite distance »,, which distance
again iy negligiblo compared with the dimensions of any mass
of gas upon which wo can make experimoents.

(3) The force must for sufficiently small values of » become
repulsive, and should becomo infinite as » is indefinitely dimin-
ished—but save for these restrictions it may bo that the foree
is attractive for some values and repulsive for other values of r.
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R shall be taken as positive when repulsive.

If ¢ be the smallest radius beyond which the force exerted
by a molecule at the centre on another molecule is negligible,
¢ is defined to be the radius of action of the central molecule,
and a sphere of radius ¢ described about the molecule is its
sphere of action, or its effective volume.

THE FUNDAMENTAL ASSUMPTION.

.16. As above stated, the number of molecules of our gas
per unit of volume may be different at different points of the
system considered. Representing by p that number, we may
have to treat p as a function of #, y, 2. At present it is con-
venient to treat only the case in which p is constant throughout
the system, and the distribution of velocities among the
molecules is the same throughout the system That being the
case we may define as follows.

At any instant let pf, («) dw be the number per unit of
volume of molecules whose component velocities in the direc-
tion taken for x lie between w and w+du. Similarly let
pfy (v) dv be the number per unit of volume whose component
velocities in direction y lie between v and » + dv, and pf;, (w) dw
the number whose component velocities in direction z lie
between w and w + dw.

We might say, and it would be precisely equivalent to what
we have already said, that f (u) dw is the chance that a given
molecule shall have velocity in # between « and u + du, and
Jy (@) dv, f, (w) dw are the corresponding chances for y and z.

17. These definitions, however apparently unambiguous,
may be based upon either of two diametrically opposite
assumptions.

We may make namely, assumption 4.

A. The chance of any molecule having velocity in z between
w and %+ du is independent, not only of its position in space,
but also of the velocities v, w, which it has in directions ¥ and 2,
and further except in the case mentioned below, it is inde-
pendent of the positions and velocities at the instant of all the

B T e e
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10 KINETIC THEORY OF GASES. [OHAP.

other molecules of the system. The excopted case is when the
two molecules are so placed that they are, or very recently have
been, within one another’s sphere of action. The foree of this
exception, and the necessity for it, will appear in the considera-
tion of the M theorem, Chapter 111,

On that assumption it follows that the chance of any given
wolecule having at any given instant velocities in @, y, 2
respectively between w and w + duw, v and v + dv, w and w + dw,

is Su(w) fy (v) [z (w) dudvduw.

Further, if we consider any pair of molecules, and denote
by the suffix 1 quantities relating to the first, by the suffix 2
quantities relating to the second, then the chance that they
shall at any instant respoctively have velocitios

in @ between w, and wy + du,,
1y and ey diey

in y between v, and v, + dv,,
vy and vy + dy;

-~

and in 2z between w, and w, + dw,,
2wy and 20y - dan,,

is Jio (W) fry () frz (W) frw () .. drsdo,dondiny ... duw,.

This or its equivalent is the assumption on which the kinotic
theory of gases has hitherto genorally been treated®. I shall
refor to the state of things assumed as condition 4. Without
doubt it may be assumed logitimately with rospect to the
limiting case of an infinitoly rare gas, that is one in which

=

* Dr Watson (Kinetic Theory of Gases, nd Kdition, p. 8, oquation B)
assumes the independence of the chancoes for two uphoren approaching collision.
And that is suffloient for his purposo. Profeswor Tait (* Foundations of the
Kinetio Theoxy of Gasos,” T'runsactions R. 4. Fdinburgh, 1888, Art. 21) makes
an equivalent assumption. Dr Boltzmann (Vorleaungen her (s Theorde,
Part I, p. 28) assumes that the rmotion i, nud over oontinues to b,
‘“molecular-ungeordnet.” I shall considor later (Ohuptor 1n.) what may be the
effect of that assumption. In the meantime the woupon that Dr Boltgmann
draws from that armoury is precisely the samo as tho ono used by Watson and
Tait, namely, that for all pairs of sphores or moleoules approaching collision the
chanoes are independent, as stated in my condition A. Those writers do not
define the exception, the oocasion for definition not having arisen, but they do
not assert the independence in tho exouptod oaso.
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the dimensions of any molecule, or if it be a centre of force,

its radius of action, are negligible compared with the mean

distance between any molecule and its nearest neighbour.
It is probable also that all the known gases under ordinary
conditions of pressure and temperature, approximate closely to
the limiting condition of infinite rarity. And therefore the
calculations made on the assumption of condition A or its
equivalent by Tait, Boltzmann, and others, of the rate of
diffusion, conduction of heat or electricity, &c., for such gases
remain unaffected.

18. Or we may make assumption B.

B. The chance of a given molecule having at any instant
assigned velocities is mot independent of the positions and
velocities of all the other molecules at the instant. On this
assumption B, instead of deducing the chance of the members
of a group of n molecules having respectively at any instant the
velocities

Uy ... U + duy &e.
from the assumed chances for individual molecules, we must
reverse the process. Let the chance that at the given instant
the coordinates of the n molecules shall lie respectively between

# and z, + da,

y, and vy, + dys,

2z, and z + dz;
for the first molecule,

x, and @, 4+ da,,
&e.
for the second, and so on,

and their component velocities between
u, and u, + duy,
v and v, + dv,,
w, and w, + dw,;

for the first molecule,
U, and u, + du,

0

2

e
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12 KINETIC THEORY OF GASES. [cHAP.

for the second and so on, be denoted by
F (@ -.. 2auidy «.. W) daydy, .. duy,.

Then the chance that the @ velocity of the first molecule

shall lie between
u, and u, + duy,

whatever be the positions and velocities of the other n—1
molecules, is

f [ f i (daday ... dzydvdunduy ... dw,) F(ayy, ... uy ... wy).

19. By way of illustration let us suppose, under condition A,
S (u) = Ceh,
where C is the usual congtant, chosen so that

0
o} f e M gy == |,
-0

Then on assumption A the chance that the members of thoe
group of n molecules supposed to be of equal massos, shall
respectively have their coordinates and velocition betwoon the
above limits iy of the form

CeMdam, ... dzndu, ... dw,,
where Q=2 (v*+ v*+ w*), and & is constant ;
and in dealing with assumption B, let us assume, the molecules
being all of the same mass and the same structure,
F (@, ..ouy ... wy,) = Ceh8,
where Q= 1w+ v+ w? +ud + ... + w2
4 by (tyty -+ V1, + Wya0,)
+ by (Ugty + V0 + wyrw,) + &c.
Here the b coefficients shall boe functions of tho distance r, at
the instant between the pair of molecules to which the suffixes
relate, which functions become cvancscont whon r exceeds a
certain very small distance. In that case omitting the constant

Sw)= f f f 4_: e M, ... deudodwdug ... dw,

-2
=¢ 00"

’ » a8 shown in the Appendix (g).

ravsvzfe‘« s



1] OUTLINE OF THE THEORY. 13

Here D is the determinant of n? constituents

2 bm blB
— b12 2 b23
D N bm bzg 2

and D, is its first coaxial minor.

The form of f(u) under assumption B is the same, except
for the factor of A, as under assumption A, but the physica.l
state of the system may be very different. For instance, under
assumption B, two molecules at a distance » apart, so sinall
that the corresponding b is not negligible, are, if b be negative,
on average moving in the same direction. According to Boltz-
mann (Vorlesungen, p. 21) the motion in this case is mnot
“molecular ungeordnet.”

20. Of these two assumptions A and B, B includes A. as a
particular case. It is therefore better, if and in so far as it
may turn out to be possible, to establish a proposition on
assumption B, rather than on assumption A. My object in
the present treatise is to show that it is generally possible. I
will appear also that A requires us to assume our gas to be
infinitely rare, whereas B imposes upon us no stringent com-
dition with regard to the density. The only condition in fact
which appears to be required at present is this: the coefficicn t.»
b must be such that for all possible values of the u’s, ¥’s, and
w's, @ shall be positive. Mathematically that is expressed by
saying that the determinant D and all its coaxial minors must
be positive.

D will appear to be generally a function of density and
temperature, and if ever D=0 the mathematical treatmnent
changes, whether or not the physical system changes its state,
and if so whatever the nature of that change may be.

It will appear also that if u, v, w be the component velocities
of a molecule of mass m, v, v/, w’ those of any other molecule,
3m (ud + v’ + ww')
is related to the Verial defined in Chapter II. of the intermolecular
forces acting on m. See Arts. 58, 85.

o
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CHAPTER TL
§ CLAUSIUS' THEOREM. ;
! 21. It will be necessary to consider at longth later the law
of distribution of velocities or momenta among the molecules
for any given value of the mean kinctic encrgy—that is the 4
form of the function which we denoted above, Art. 12, by £(V).
The following proposition, due originally to Clausius, is inde-
pendent of that law.
| If m be the mass of any one of a system of molecules in
g stationary motion, @, ¥, z the coordinates of its centre of
| inertia at any instant, we have, X denoting summation for all
¢ the molecules of the system, and Zma, Smy, Sme being zero
gl_ ( mae dﬁ) =( :
) @&\ )=
d(s dy
% dt (z""g’ izi‘) =0,
;‘““ d < dz _
dt( ~me Ez) = 0, 3
i do\' |  dw 3
b or Zm (&?) + Zma = 0, X
with similar equations for y and z.
x It follows that : i
da\'  (dy\* = /de)? .
. Sm {( dt) + (&z) + (71‘2) } =— 3 (Xz+ Yy +Zs), J
t X, Y, Z being the component forces, whether oxternal or :

intermolecular, acting on a molecule,

¥
S
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22. We will now however reserve X, Y, Z for the com-
ponents of external force only, and let R be.the intermolecular
force between two molecules acting in the line joining their
centres, and let B, I8, IR, be its components. So that Clausing’

equation becomes
o fdm\t Ayt AN e v
wn () + (@) + (@) )=~ 2o+ vy + 20
=23 (R + Ry + Ry2)......... (1.
Half the expression on the right-hand side of the last
equation is called the Virial. And scparately
— % (X + Yy + Zz)

is the Virial of the external forces, and — §3N(Ryw 4+ Ryy + R,z)
is the Virial of the intermolecular forces.

23. Let one molecule be at L or a, ¥, 2, anothor at I or
o, y, . Let r=(@—aV+@y—y)Y+(@—2) Then for the
force on P duc to P, R being taken as positive when repulsive,

1{w=‘?.:7"f"‘ R, RF?/;.«(_ R, Hlmz;z R

Similarly for the force on P’ due to P,

x—a oy -1y z~23
RBy=-"7=R, R=-LZYpR p=-"""p
and therefore for two molecules at P and P’

S (R + Ryy + Ryg) = B @7 ff?’,:.",,,.(,.fl,__:;,?/f_)” =2V _ p

And so the term in Clausius’ equation due to the inter-
molecular forces is
33 (Row + Ry + Rp2)=X3Rr ............ (2),
each pair of molecules being counted onco.

24. We have next to consider the oxternal foreos, whosoe
components are X, Y, Z. I shall follow Van der Waaly'
method.

Let the whole system be enclosed by a surface S, through
which the molecules cannot pass. Let p be the normal pressure

i i
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16 KINETIC THEORY OF GASES. [CHAP.

per unit of area on S, directed inwards. At any point P on §
let N, u, v be the direction cosines of the normal s to S at P,
I, m, n those of a the line joining P with the origin. Then for
a molecule at P

— (X + Yy + Z2) = p (IN¢ + mua + nva)
= pau cos (8, a)
da
=pu g,
if ds be an element of the normal, measured outwards,

da?

=iP g

Let us now assume p to be constant over the whole surface
S. Then

-f (Xa+ Yy + Zz) dS

= },pff‘-fg ds

=4p f f Vit dadyds
throughout the space enclosed by 8, by Green’s Theorem,
= 3pow,
if @ be the volume enclosed by A.
We see then that the Virial
= jpw — § XX Rr,
or by (1) fpw = Zgm (uP + v* +w) + §XZ Ry ...l (8);

or, if 7' be the mean kinetic cnergy of the system of molecules,
T
p=4 o + 323 Rr/w,
and pz; represents the mean kinctic energy of a molecule.

If we take the volume w for a gencralised coordinate,
supposing it to change in magnitude but not in shape, the

i
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other coordinates of the system may be a:m*', yw"’, &c., where
”

. 7 -
x, vy, &c. are numerical. Then §d)=da}' and if x be the

potential of the intermolecular forces §23 Rr/w = — zg, and our

. . dl d .
equation assumes the Lagrangian form p = 7o —dg()’ p being
£

the applied force which maintains e constant.

25. If the surface S be an imaginary closed surface, the
system of molecules in the external space being homogenocous
with the system within S, the pressure per unit of area of N
is given by the above equation,

pw = Zfm (W + v* + w?) + 2SRy,

The whole Virial or §pw — §3ZRr is thus equal to the

whole mean kinetic encrgy of the molecules within S, It

does not follow that the two parts of the Virial, namaoly §pe
and — ZZ4Rr, are separately proportional to Xgm (16 + v* - w).

26. If S be the oxternal clastic boundary of the systom
through which molecules cannot pass, wo might caleulate p by
the same method as we calculated it in thoe caso of thore being
no forces, namely p = §mp’ V", where p’ is the mean density, and
$m V" the mean kinotic energy, of moleeules near S, This
result is mot inconsistent with Art. 24, boecauso the moan
potential energy near S is, in the case now supposed, different,

from the mean potential energy throughout the enclosed space,
V2 and so V" V* and p' % p.

The value of TZRr jfor Klastic Spheres.

27. We have assumed R to be a finite force. In the
limiting case of so-called elastic bodies, the forco which acts in
collision between two such bodies is, according to the usual
convention, an infinite forco which reverses tho veloeitios of the
colliding bodies normal to their tangent plane at collision in an
infinitely short time. As a consequence of the time boing
infinitely short, no change takes place in the coordinates during

B, 2
N
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collision, and no body can ever be in collision with more than
one other body at the same instant.

It is of course admitted that no such body exists in nature.
But the behaviour of gas molecules in regard to their mutual
action is probably, at least in the case of rare gases, approxi- 1
mately the same as it would be if they were elastic spheres of
{ | this form. And the assumption made in the case of the
‘ spheres thatithe kinetic energy of translation of two spheres in
collision is in the aggregate unchanged by the collision, must
if molecules are stable be true on average for any form of
molecule.

oo o

i e

28. It is then possible to calculate ZXRr for a system of
elastic spheres, regarding the force as finite, and sufficiently
great to produce the reversal of the normal velocities in a
finite time 7, and treating the coordinates as constant, to proceed
to the limit when the force becomes infinite, and = zero.

i gl s e 5 A ecsare vt
TR

Let the colliding spheres be each of mass m, and of ;
diameter ¢. Let p be the number of spheres per unit of
volume.

R

! Let T be now the mean kinetic energy of a sphere. And
- let w, v, w, «, v, w’, be the component velocities of any two
spheres, V their relative velocity. Then

e

| V=u—-w)y+w—2v)+ w—w),

f and mV?=2m (43 + * + u¥) on average
=4T.

Let 6 be the angle between the relative velocity and the
line of centres at collision. Then for each sphere the normal
component of relative velocity is §V cos , and it is reversed in
time 7. The assumed force is then B = mV cos 8/r, and it acts
during the time 7. The number of collisions per unit of
volume and time is, given V, mc*Vp. And the number for i
which 6 lies between 6 and 6 +d# is

2mc*Vp sin 6 cos 6d6.

R
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i} CLAUSIUS’ THEOREM. 19

Also r=¢. Hence for all collisions of a pair of spheres with
given V

SRr=2mmeVp ' in Bcost 0d0

- @
= §wme Vp.
And for all evllisions of a pair of spheres with whatever
value of ¥ . -
SRr=iwcpmV?
= $7cpT,
or 3= Rr = 4=cpl.
But each collision is now counted twice, namely, once from
the point of view of each of the spheres concerned.  Counting
each collision once, or from the point of view of one sphere only,

$ERr=3%xcpT ..o, (4),
whence we obtain for each sphere
d s
a‘p‘ iuRr = §TC‘T,
and for all spheres
d <5
and therefore 1SERr=3}%wcp.pT.

I shall write « for §=c®p. If a be the radius of a sphere
which on average contains one molecule, evidently

pr
x=% &
or x is four times the aggregate volume of all the spheres in
unit of volume.
It follows from Art. 24 that
jpo =Zim (v + v+ v*) + ZgaT,
or p=31+30)pT oeeneeen (B

On a system of Elastic Spheres in Vertical Column.

29. The fullowing investigation depends upon the usual
sassumption made with respect to collisions between elastic

O )
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20 KINETIC THEORY OF GASES. [crAP.

bodies, that a certain momentum is instantancously transferred
through a finite space. The responsibility for that assumption
rests on the inventor, whoever he was, of the theory of rigid
elastic bodies. Consider a vertical column of gas, or material
system, whose molecules are equal elastic spheres, under a
constant vertical force f.

If p be the pressure per unit of surface, # the height of a
point in the column above a fixed plane, 7 the mass of a sphere,
p the density, p, the density at the base, we have

d
dl; = _mf Ps
also by (5) =41+ §«) pT.
Whence, if we make

T = constant = —:i-

40’
we find - 2mfh = O.Z_%{ff? + §me 3{; ,
or p= Poe-shmfme— (n—x‘,).

Again, consider IV spheres crossing the plane =0 with «
for vertical component of velocity. Of these somo, say N — N”,
will reach the plane &= da without collision. N’ will undergo
collision before reaching dz. But for these N’ there will in
stationary motion be substituted, as the result of collisions, N’
other spheres with the same vertical component u.

Now, if the impact were direct, .e., the line of centres at
collision vertical, the ecffect of the
collision would be to substitute for a
molecule with vertical velocity u at

/ ' height # a molecule with the same
vertical velocity w at height @+,
A 7 where ¢ is the diameter, or, as we

may express it, the substituted sphere
would gain a vertical height ¢, with-
out losing in respect of that distance
any kinetic energy to the force £ We might without affecting
the general motion suppose the two spheres to change places

g
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after collision, so that one would loso, and the other gain, the
height ¢ without change of kinetic energy. If, therofore, all the
N’ collisions were dircet, the average height of the NV spheres

or their substitutes at the end of the time %« would be, not da, but

/

dz + sl ¢, while their loss of kinetic energy would be Nnyfda.

But all impacts will not be direct; we must consider then
the result of indircet impacts. For this purpose consider two
classes of collisions, in one of which the sphere 4 has vertical
component % before collision, and in the other A’ has vortical
component % after collision. The effect of a pair of collisions one
from each class, is to substitute .4’ for 4 as the sphore with verti-
cal component u. Now lot { (soe figure) denote the vector line
of centres at collision, and cos (ul) the cosine of the angle which
! makes with the vertical. Then in the first of the pair of
collisions the centre of 4 is below the point of contact by
$ecos (ul). In tho second, tho centre of A’ is above the point
of contact by §ccos (ul). There is no reason why tho point of
contact should be highor or lower in one caso than in tho other,
It will be on average at the samo height. Thorefore on averago
of all pairs of collisions substituting A’ for 4 with vertical
velocity u, 4’ is above A by

¢ cos (ul) =7, suppose.

Let ¢ be the relative velocity of the two colliding spheres,
Then considering ¢ as radius vector of a cone of axis u, and [ ns
radius vector of & cone of axis ¢, we got

7 = 0 COB (31:?1') cos (gl)
= §¢ cos (uq),
because  con (¢l) = f 2 cont O sin 6 dO / f * con 0 win 0 0 = §.
0 0

Let v be the absolute velocity of the sphere whose vertienl
component of velocity is u, 8o that

o8 (uy) = ;}f .
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Then 7 = §e cos (4q)
= §¢ : cos (vg).

Let  be the velocity of the othor colliding sphere, £ tho
7= §o
We have to multiply this by the

anglo between v and §r. Then
- Wy —rcos
/ ’ 1 '
A
K number of collisions which N
spheres having velocity » undergo with spheres of volocity
Y ... Y + dyp, making with v angles £ ... K+ dF in time d¢, or

d——ﬂf, and then integrate for all values of 4 and K.
%

Let pf(¥)dyr be the number of sphores in unit volume
with velocity ... y+dy. The result is

© T o U= cos B de
Nrdo fo ) [og,mnlmnqgc% v "’q o h e
= §arc’p . Nz
= g Ndaw.

Therefore at timo dé the average height of the N spheres or
their successors above the plane @ = 0 is (1 + &) da.

But the energy which allowing for substitutions they lose
in the ascent is Nmfdw. Tho loss takes place only during
free path. It follows that the loss of encrgy due to the ascent
da is, allowing for substitutions, mfda: (1—«) per sphere.

Now suppose that at =0 the number per unit of volume
of spheres having dmu... d (u*) for enorgy of vertical velocity
is

Ke M d (UP) ooviiineiniinecnns (a),
where K is constant. Thoen, by what has been proved above,
the number which at height 0w have fmu*... d («*) for cnergy
of vertical velocity is

e Imfw =ik I gmhmiut o (us )'

RE,
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and the number which at height 9z have
Fmad ... d (u?) — mfdz (1 — )

for energy of vertical velocity is
e—nhmfa:c o _K‘e—h (mud—2myfox) (1—«)) dus’

that is, Kem@ dup e, ®),
because, neglecting «? &c.,

K = KoM,
and therefore 2hmffkox = — k.

The two groups (a) and (b) are equally numerous, and
therefore either can by ascending or descending, allowing for
substitutions, exactly replace the other. Now this is the
reasoning by which in the ordinary case, when « =0, we prove
p =pie~ ™= Tt now proves p = pehmize*,

I shall refer to this problem later for illustration.

30. The pressure per unit of surface is increased in the
ratio 1:(1+4«) as the molecules, from being material points,
become spheres with finite diameter c.

But the pressure per unit of surface is the quantity of
momentum which is carried through unit of surface in unit of
time, Art. 12. Now, so far as this momentum is carried
through the surface by molecules during their free path, it is
not altered in the least by « acquiring finite value. The :
increase of the transfer of momentum consists in the case of ’
elastic bodies in the process above explained, namely, the
instantaneous transfer of momentum through a finite distance
which occurs on collision.

The result of Art. 29 may also be explained thus. The
mean effect of all collisions on any sphere is equivalent to a
force «f acting from the greater to the less density.
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CHAPTER IlI.

THE DISTRIBUTION OF MOMENTA AMONG THE MOLECULES,
ASSUMING CONDITION A,

31. Tug simplest form of molecule that we can conceive is
an clastic sphere, such ag deseribed in Arts, 28, 20.

An elastic sphere, so conceived, may be considered as having
three degrees of freedom only, namely, motion of translation
in space. For the spheres being supposed perfoctly smooth,
motion of rotation about an axis, if non-existent, will not be
produced, and if existing will not be altered, by collisions.

Let u, v, w be the component velocitios of a molecule, m its
mass. Then the molecules being clastic sphores of mass on, let
the number por unit of volume of molecules whose velocities
in direction @ lie between « and w+du bo proportional to
e~Mmwdy,  This ig called Maxwell's distribution. It has been
proved by several writers that assuming this distribution
to exist, and assuming condition A (which is neeessary), the
distribution will not be disturbed by collisions between  the
spheres.

My object in the present chapter is not to give another
proof of this proposition, but to show in what manner condition
A affects the truth, as well as the proof, of the proposition. I
shall thercfore follow the general method elaborated by Boltz-
mann and Watson, as being more convenient for my purpose
than other known proofs, e.g. Professor Tait's.

32.  Consider two sets of spheres, one set having mass M,
the other mass m. Let the numboer per unit of volume of M

|
|
l

i
i
i
i

RS




CHAP. I1I.] THE DISTRIBUTION OF MOMENTA, ETC. 25

spheres be p,, of m spheres pn. Let us form a diagram of
velocities, the velocity of any sphere of either sot being repre-
sented in magnitude and direction by a line drawn on the
diagram from the origin O to any point P or ,y,2 At P
suppose an clement of volume dadydz. The number per unit
of volume of sphores M whose velocitios are represented by
lines drawn from O to points within that clement shall be

puk (2, y, 2) dadydz,
or shortly puFdadydz.
Call these the class F (dadydz).

Similarly the number per unit of volume of spheres m whose
velocities are represented by lines drawn from O to points
within the clement of volume dfdnd{ at the point E, », ¢ shall

be pnt (€ m, §) dEdndg,
or shortly pm JAEdNAE,
and we will call these the class

JdEdndg.

We ray also oxpress the above dofinitions as follows.  The
chance that a sphore M shall belong at any instant to the class
Fdadydz is Ldadydz.  The chance that a sphere m shall belong
at any instant to the class fdEdnd{ is fdEdndy.

33. Now assume condition A.

Then the two chances are independent.  And therefore the
chance that a pair of sphores, M and m, shall balong, M to tho
class Fdadydz, and m to the class fdEdndg, is

Ffdtdndtdudyds.

On our agsumption of condition A this is true even if the
two spheres arc on tho point of collision, and therefore very near
each other. TFor that casc is not within tho oxception defined
in Art. 17. If we assume B instead of A, it may be true only
if the two spheres are at a considerable distance from each
other. But in this chapter I assume condition A. On this
assumption the number per unit of volume of pairs of sphorcs,
M and m, which have velocitios between the limits aforosaid,

T S s
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26 KINETIC THEORY OF GASES. [oHAP.

and for which m lies within the clement of volume dw, so situated
that M and m are approaching collision, is EfdEdnd{dadydzde.
If the element dw bo so situated that M and m are separating
after collision, the case is within the exception of Art. 17, and
therefore condition A does not apply. Lot us now define de.
Let, namely, B*= (2 —EF+(y = n)'+ (= {)", so that R is tho
relative velocity of M and n.

Let ¢ be the sum of their radii. About the centre of M
suppose a circular area described with radius ¢ in a plane
perpendicular to K, and lot

do = mctRdl.

Then the number per unit of volume and time of collisions
between sphores M of the class Fdiedyds, and spheres m of the
class fddndg, is

pupmFdadydzfdEdndime R,

And the whole number per unit of time of collisions which
members of the class Fdadydz undergo with spheres m of any
class is

pupmldadyds f f f :: JdEdnd{me IR,

Each of these diminishes the number of the class Fdudyds
by one. So the rate of diminution per unit of time of the class
Fdadydz due to collisions botween its membors and sphoeres m

is pupmbdadyds f f JAdEdndEmet R ooviinn, (6).

The Effect of Collisions.

84. We have now to find the number of spheres M which
by collisions with spheres i pass into the cluss Fdadyds por
unit of volume and time. Lot P, p be the contres of M and m.

On a collision the only thing that changes is the direction
of B. And that change depends upon (1) the angle ¥ which
the line of centres Pp at the instant of collision makes with R,
(2) the angle ¢ which the plane through a line drawn through
the centre of M parallel to R, say I’n, and the point of contact
of M and m makes with a fixed plane through 2.

R
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The direction of R after collision is in the same plane
through Pn, and makes the angle 2y with Pn. That is the
eagiest way to picture to ourselves the effect of a collision.

In order that a collision may take place, it is necessary that
a line ps drawn through p parallel to R should cut the circular
area above mentioned. We may divide that circular area into
elements whose type is 2¢?sin 4 cos Yyrdyrd¢. Assuming con-
dition A, the line ps is as likely to cut the circular area in any
one point as in any other. Therefore the chance that the new
direction of R shall make the angle 2yr...2¢+ d+yr with the
original direction of R is proportional to 2 sin 4 cos Ydvr, that
is to sin 2yrdyr. It follows that, assuming condition A, for any
given direction of R before collision, all directions after collision
are equally probable, and on average the whole kinetic energy
is divided equally between the spheres.

35. The direction of R after collision is then a function of

) . .%', 2/, Z, E’ , gs '\P: ¢-
Let the new values of these variables be denoted by the
corresponding accented letters. Evidently yr, ¢ are unaltered,

or $=¢ ¥ =1

All those pairs of spheres for which before collision the
variables z ... ¢ are between

z...z+dz...E... C+dE,
and ¥, ¢ between limits

V.o.Y+dy, ¢...¢p+dd
will after collision have these variables between limits denoted
by the corresponding accented letters.

Now let p, F'dz'dy'dz’ be the number per unit of volume of
M spheres which at any instant belong to the class F'd«'dy’d?’.
Similarly after collision m passes into the class f'dE'dn’d{,
whose numbers are f'd&'dn'd¢’.

36. If after collision the velocities of M and m were
reversed, without change of their positions, they would by a
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28 KINETIC THEORY OF GASES, [cHAP.

reverse collision pass into the classes Fdadydz and fdEdnd¢
respectively but with reversed velocities.

It follows that the number of pairs of spheres, M and m,
which before collision belong to the classes F'dz'dy'dz and
J/dEdy'dt respectively, and by collision with given values of
v and ¢ pass into the classes Fdzdydz and fdEdnd{ respectively,
is, again assuming condition A,

pupnl da’dy' dz'f'dE dn'dE’ 2 sin {r cos YdryrdpciR.

37. Now <, v, 7, E, v, are functions of #, y, 7, € 7, §, ¥,
¢, and of those quantities only. Also the system of two spheres
passes with unchanged kinetic energy from one state to the
other.

Whence it follows by the general proposition proved later,
Art. 50, and can be proved independently, see Watson’s Kinetic
Theory of Gases, second edition, p. 9, that

do/dy/ d A dn/de’ = dadydzdédndt............ (.

Therefore the number of pairs of spheres, M and m, which
per unit of volume and time pass out of the classes F'dz'dy’dzs
and f'd§ dy'd¢’ into the classes Fdzdydz and fdEdnd{ respec-
tively is with given r and ¢

pupml f'dadydzdEdndl 2 sin yr cos Yrdrdpc?R.

And if now & 9, § 4, ¢ vary, we find for the number of
M spheres by which, owing to collisions between M and m, the
class Fdadydz is increased per unit of time the expression

pxepmdadyds f f f +: dkdndt f ff: 2 sin yr cos i dF'f /AR

= pupmdadydz f f f dEdndtF f'reR.

But the number by which the same class is diminished per
unit of time by collisions with the m’s we found to be

pupmFdadyds f f fdEdndne'R.

i s
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If therefore 0(%— dadydz denote the change per unib of time

of Fdadydz, due to collisions of M with m,
U Godydc = duiyds [[[ agandt (F'f' - Bf) moR .(8),
t
Similarly
%dfdndgz—- ddndt f f f dudydz (F'f' = BfywoiR ... (8a).

38. If F'f'= Ff in all cases in which a pair of spheres M
and m can by collision pass from the classes F and f to the

Y

classes ' and f' respectively, or vice versa, %Itl= 0. Similarly

%= 0. And this being true for all values of F and f, the

motion is stationary. Assuming then condition A, F'f" = Ff is
a sufficient condition for stationary motion,

The proof that it is a necessary condition iv due to Boltz-
mann, and is as follows.

Let H=‘Uf:: dedydzF (log B —1)
+f[f f:dgdmz;_/(log f=1),
Then -3- =/ f | dadyds %8 \og J

+f | f didndg % rog /.

And substituting for T smd f their values above found,

ar_ [/ +: dedyds [ [ i:dfdnol;‘ | [F = 57y Qo B+ 10g /)y wek

- f f f dodyde f f ddndt (F'f’ — FF) log (Ff) weiR....(9).
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But in the course of this integration z, y, z and £, 5, { assunc
all possible positions on the diagram of velocities, and therefor
assume the positions corresponding to any F” and f”, and there
fore F and f among other values assume the values F” and f
Whence ‘

B _ [[] asayas [[] aganat vf - F7y1og FpmeR...10)
and adding together (9) and (10)
%=%fff dmdydsz dédndt (F' f' — Ff ) log F—F’_—‘; mR...(11

And this is necessarily negative, if not zero, and then onl;
zero when F'f’=Ff for every case in which two spheres ca
pass by collision from the classes F and f to the classes F” anc
J' respectively, or vice versa. But in stationary motion %
must be zero. Therefore in stationary motion, given conditiox
A, F'f’ = Ff, is a necessary condition. A distribution o
velocities in which F’f" = Ff for all cases in which a pair o
spheres can pass by collision from the state ¥ and f to the
state F” and f’ or vice versa shall be called the normal distre
bution. Any other distribution shall be called an abnorma
distribution. The H theorem proves that when the distributior

is abnormal %1; is negative.

This is known as Boltzmann’s minimum theorem, or the
H theorem, and H is Boltzmann’s minimum function, or, as he
sometimes calls it, the Entropy function. The theorem is as
here given, founded on, and depends for its existence upon,
condition A, without which we cannot use the product Ff to
express the frequency, or chance, of the simultaneous occurrence
in collisions of the two states denoted by f and F.

On the H theorem. An objection considered.

39. If when the entire system of elastic spheres has, with
H diminishing, reached a certain state, all the velocities were
simultaneously reversed without change of the coordinates, the
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system would exactly retrace its course with H increasing. It
is therefore possible, when a system is set in motion, for H to
increase in that motion. This was at one time considered an
objection to the theorem, because the theorem was supposed to
prove that under no possible circumstances could H increase.
It however does not profess to prove that H always diminishes,
but that, assuming a certain condition H must diminish on
average. For the assumption underlies the whole proof as
hitherto given.

Now to meet this objection, consider two spheres, M
having velocities «, y, z, and m having £ #, ¢ Construct
a spherical surface of radius ¢ about the centre of M, and
consider the element of volume

2¢? sin r cosyr dyfr dp Rdt = dw.

dw <«—

If m be within dw, the two spheres are either (1) approaching
collision, or (2) separating after collision, according as dw is on
one or the other side of M. Condition A asserts that the
number per unit of volume of pairs of spheres, M and m,
belonging respectively to the classes F' and f, which are ap-
proaching a collision of that kind—i.e. a collision with the given
¥ and ¢—is Ffdz...d¢{dw, see Art. 17 and note. But con-
dition A does not assert that the number per unit of volume of
such pairs which are separating after a collision of that kind is
Ffdz...d¢dw, because that case is within the exception of
Art. 17. In fact if =, y, z and &, 7, ¢ denote the precollision
velocities of the separating pairs, 2, ¥/, &c. their velocities after
collision, the separating pairs are the identical pairs which dt
geconds ago had respectively velocities

z..x+de...... g...¢+dg,

iy
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and were approaching a collision of the kind in question. The
number per unit of volume of the separating pairs is therefore
by our assumption of condition A

Ff, dz...d¢, do,

or which is the same thing,

. Ffdyx,...d¢ dw,

and not F'f'ds...df'de. (We are assuming at present that
Ff+ F'f') Now in the reversed course the pairs which in
the original course were separating have become the approach-
ing pairs, and vice versa. Therefore in the reversed course the
number per unit of volume of pairs, M and m, which, belonging
respectively to the classes F” and f”, are approaching a collision
of the kind in question, is Ffdz'...d¢ dw, and not F'f’da ...
d¢'dw, as according to condition A it should be. We see then
that condition A is not satisfied in the reversed motion, and
why not.

The fact then that in the reversed motion H increases with
the time is no objection to the H theorem as a mathematical
proposition, because the reversed motion does not satisfy the
condition on which the H theorem is based.

40. We now see the necessity for the exception referred to
in Art. 17. For if condition A -continues to exist throughout
the direct motion without that exception, it must also continue
to exist throughout the reversed motion. Therefore by the H

theorem % is negative or zero in both motions. But if it be

negative, and differ from zero, in one of those motions, it must

be positive in the other. Therefore %I; must, if we assume

condition A without exception, be zero in both motions.

In other words, if we assume condition A with the ex-
ception, the mathematical consequence of our assumption is
that H is either minimum or diminishing, as the theorem asserts.
If we assume condition A without the exception, the mathe-
matical consequence of our assumption is that H is minimum
already. This condition is satisfied-byMaxwels~distribution.
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41. We must now consider Boltzmann’s own assumption
that the motion is “molecular-ungeordnet.” ~ It being assumed
that in the direct course the motion is molecular-ungeordnet, is
1t molecular-ungeordnet in the reverse course, or not ? I think
Boltzmann’s answer to this question would be in the negative,
on the ground that we, or Maxwell’s corps of demons, have
“ordered ” (geordnet) the motion by the very act of reversal.
If this be so, then “molecular-ungeordnet” has, as applied to
this theorem, precisely the same properties as my condition A.
See Vorlesungen, p. 42.

Let us endeavour to construct synthetically a system which
shall without doubt be molecular-ungeordnet. The molecules
being distinguished by numbers, I ask (say) Dr Watson to
assign velocities to them according to any law he pleases.
Then I, in complete ignorance of those assigned velocities,
scatter the molecules at haphazard through space, and they
shall start from the positions which I so give them with the
velocities so assigned by Dr Watson. That is, primd facte, a
molecular-ungeotrdnet system—in fact it is as near an approach
to chaos as is possible in an imperfect world.

Clearly also in this system condition A is satisfied, and the
system will, or in all probability will, move from its initial
position with H diminishing. Equally clear is it that if in the
initial position all the velocities were reversed, condition A
would be satisfied, and the system would, or in all probability
would, move off in the opposite direction with H diminishing*.
It follows then that if the selected distribution of velocities be
abnormal, the state in which we have placed the system is one
from which the system can and probably will move with H
diminishing, but into which it must move with H increasing.

* This statement is not inconsistent with that of Arts. 39 and 40 that %I-g
changes sign on reversal of the velocities. For in those articles the pairs of
molecules having velocities ', ¢, &c. are separating after an actual collision,
before which they had velocities z, £ &e. Corresponding to the classes x, £,
their number is Ff. In the synthetic system no collision has taken place, and
the number is F'f’.

B. . 3
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If tho system were to move through that state, (fil;I would be

discontinuous,

It may indeed, if the distribution of velocitios happens to be
the normal one, be 4 Maxwell’s distribution. It eannot be one
of a serics of states through which the system passes in its
approach to Maxwell's distribution, as the I1 theorem requires.
The system then which I have supposed to be constructed is
not, as appears to me, in Boltzmanns sense molecular-unge-
ordnet. It should secm that the molecular ungeordnet stato
must cease to be such on reversal of the veloeitios,

What the H theorem proves then is this, that the distri-
bution of velocities expressed by the equation £f" = Ff is the
only distribution which can bo permanent consistently with the
existence, and the continued existence, of condition A or its
oquivalent. It is assumed without proof, and as I hope to
show in the succocding chapters i not generally true, that
condition A can and does continue to oxist,

The rate at which I7 diminishes has been ealeulated by
Tait, Watson, and others for cortain very interesting ensos,  Seo
Watson’s work above referred to, Art, 15,

42.  Boltzmann (sco  Berlin  Nitzungsberichte, Fobruary
1897) considers that wo have in this behaviour of the system a
true irreversible procoss. That term is gencrally applied only
to processes involving dissipation of encrgy, that is conversion
of some other form of enorgy into heat.  If however heat, or
temperature is to be explained as the kinetic energy of mole-
cules or atoms moving according to wsual dynamical laws,
every process, even if it does involve conversion of other forms
of energy into heat, is theoretically reversible ; would in fact be
reversed if at any instant all the velocitios were reversed, as we
assumed them to bo in discussing the H theorem. If that be
80, by asserting that any process is irreversible we assert only
that by no means within our power ean we reverse it, because,
that is, we cannot control individual molecules, It is in this
sense that, as I understand, the diminution of £ in accordance
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with the theorem would be called by Boltzmann an irreversible
process.

Boltzmann also shows (Vorlesungen, pp. 58—60) that — H
differs by a constant only from the logarithm of the chance of
the system being in its actual state, and thorefore as H
diminishes in absolute value, the system passes from a less to
a more probable state. Seo note at end of chapter.

43. A solution of the equation
Fy'="Ff,

for the two sets of elastic spheres is

#
F= (@_‘[) g—hM @A+ +28)
w .
o} coreeenn (12).
F= <_) (i)
m

That is found by treating the kinetic encrgy as the only
thing which remains unchanged by the collision. It follows
from this solution that for the samo sphere a® =y = 2%, and
that for different spheres Ma# = m* &e., or tho moan kinotic
-energy is the same for cach sphere whatever its mass.

44. The complete solution of the cquation Ff= F'f’, as
given by Boltzmann, Vorlesungen, p. 181, is

S=AdehQ
where 4 is a function of the coordinates, and
RQ=m{l@—uP + (B =0+ (y =W} ccevrernnne. (13),

u, v, w being constant velocities; F has the corresponding valuo.
In stationary motion g{ =0, that is

{(a—u)%+&c.+%g&—%¥g-+ &c.}Ae""Q=O.

Suppose now the system to be in a field of external force

whose potential is y, e.g. the column of Art. 29.
@0 )
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If no other forces act on the system than those derived fromn
X, We have
da dw\ _ dy
m (% - %) - S (14),
and therefore the equation becomes
(a — u) (%% + 2hA %Xw) et &e.=0 ......... (15),
the solution of which is A=e2 (16).

For instance, if the molecules be elastic spheres of infinitely
small diameter, or material points, between which no collisions
occur, there are no forces except those derived from y, and we
deduce by the above method, 4 = e=%x,

The expression now asserts that the chance of a molecule
having velocities a... a+ da &c., and being in a position where
the potential of the external force is ...y + dy, is

e~ 2x ¢=tmila-wr+&et dodBdydy.

It follows that the distribution of the velocities is the same for
all values of y, that is in all parts of the system, and that the
number of molecules per unit of volume is proportional to
e~2x, This agrees with the result of Art. 29, because in the
case now supposed « = 0.

45. If the spheres have finite diameter ¢, so that collisions
do occur, there are other forces acting besides those derived

k from , namely, the infinite forces assumed to act for infinitely
& short times during collisions. And it is no longer true that

: | d dy

2 m&z(a—u)-——%,

i and we cannot obtain the result

f= &~ 2hx e—hm{(u—u)2+&c.}’

indeed that they act in equal and opposite pairs, but no
solution can be satisfactory which takes no account of them.
See further as to this problem post, Art. 103. -

g except by ignoring the infinite forces altogether. It is true
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46. If the intermolecular forces are finite, and have a
potential 4, we have

d
'm.%(a—u)=——~—--——

And our formula leads to the conclusion that
A = e~ 0+Y)

expressing now the fact that as before the distribution of
velocities is on an average the same for any molecule, in
whatever position it happens to be, not only with respect to
the external field, but also with respect to other molecules—but
that the number of molecules per unit of volume in a position
in which the whole potential is y + v is on average e 2&+¥),
T see no reason why we should hesitate to accept this result, or
how we can avoid accepting it, except that Dr Watson (in the
work above referred to, pp. 70, 71) hesitates to accept it,
though I do not understand bim to deny its validity. He
puts the case that, with finite intermolecular forces, a molecule
P may have a sphere of action, within which may be many
other molecules. Any individual molecule outside of the
sphere of action exerts on P a force which is negligible. But
the infinite number of molecules outside of the sphere of action
may exert on P a sensible force. And he shows that this may
be included in the fixed centre forces. But he refrains from
drawing any conclusion for the molecules within the sphere of
action.

Boltemann and Watson's generalisation.

47. Our molecules regarded as elastic spheres have each
only three degrees of freedom, that namely of motion of trans-
lation.

Let us now attribute to our molecules the most general
form possible.

Let a molecule m be a material system, whose position and
state at any instant are defined by 7 generalised coordinates
¢ --- n, and the corresponding momenta p ... py.
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Lot py be the number of molecules of the kind m per unit
of volume.

Let PnS (G oee GuPrees pn) dipy oo dpy,
or shortly pm Sy, ... dpy,

denote the number per unit of volume of molecules an for which
the variables lic between the limits

G e Qo dg
Un +on Gnt Aoy
Proeee Py ddp,

P vee Putdp,

s

or, as we shall express it, are in tho state e

Wo may express this in a difforont way that the chance of
an m molecule being in the state ¢ is fdg, ... dp,.

It is assumed that the molecule is, so far as its own
intornal forces are concerncd, stable.  That is that if it be now
in tho state ¢, and if no forces except its own intornal forces
act upon it, it will after the lapse of some time, greator or loss,
find itself in the state (¢) again, exeopt so far as the coordinates
defining its position in space, which are included in gy ... ¢n,
are changed by its motion of translation. Tt i also assumed
that £ will not be altered by roversing the sign of py...py
simultaneously. And therefore f cannot contain odd powers or
products of the p's.

In the same region lot there be another set of mole-
cules M, cach having » degrees of freedom, whose coordinates
and momenta are denoted respectively by @, ... Q. and Ly ... P,.
And about those make the same assumption as above stated.

Let py be the number of M molecules per unit of volume.
Let o F Qe Q. PYAQ, ... dD,,
or shortly puddQy ... dLly,
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denote the number per unit of volume of molecules M for
which the same variables lie between the limibs

Q- @+ dQ

...............

....................

or, as we may express it, are in the state C.

48. Let ¢ (¢ .. ¢ Qi ... @) be a function of the coordinates
of two molecules m and M, such that when ¢ is positive there
is no mutual action between the two molecules.

Let us now make an assumption cquivalent, with respect to
the molecules now under consideration, to condition A, Lot
¢
dt
the two chances F and f arc independent.  And therefore the
number per unit of volume of pairs of molocules, one belonging
to the m’s and the othor to the M’s, for which at any instant
the variables lie, for me within the linits ¢, and for M within
the limits C, is

us assume namely that so long as ¢ is positive and ~ % negative,

PopacF A .. ApudQy ... AP,

When ¢ passes through zero the two moloeules pass into
their sphere of mutual action, and an encounter commonces
between them. The chances #' and f generally cease to be
independent.

It may be the case that ¢, having bocome negative, would
if the two molecules are not influenced from without, remain
negative for all time. The two molecules, that iy, may, each
remaining stable, form a permanent union revolving round
one another in a closed orbit. I shall not consider that casc,
but assume that after a certain time 7, ¢ will again pass
through zero and become positive. The encounter coases when
¢ again becomes zero. All those pairs of molecules for which

at a given Instant ¢ lics bet i
given instant ¢ lies between zero and dat U g being
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positive, will within the time dt after that instant commence,
and as I am now assuming, will in due time afterwards com-
plete, an encounter. The number-per unit of volume and time

dé

of such encounters must therefore contain the factor FrE

49. But the two molecules have between them only n+ »
degrees of freedom. We must therefore use ¢ for one of the
generalised coordinates defining the position of the double
system.

Let us substitute ¢ for ¢q,. Then all those pairs of mole-
cules, m and M, for which at any instant the variables other
than ¢, lie within the limits ¢ and C respectively, and for

which at the same instant ¢ lies between zero and %‘—?dt, will

in the interval of time dt after that instant encounter one
another. The number of such encounters which commence in
time d¢ is therefore
d
pmpul g ... dgndp, ... dppdQ; ... dP, 'o'z(‘lt? dt.
As a consequence of the encounter, after the time T the
variables will be found between the limits

G eeenennns ¢ +dgy
qln—l .o q’n—x + dq'n—1 ’
D oo pldpy [ (c")
Pr oo Pa +dpy

for m, and

’

for M, and ¢ between zero and %% dt, and the encounter

ceases as ¢ again passes through zero. The pair of molecules
pass out of their sphere of mutual action.

e ke e e

o e e P

o

T e e Sl i
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According to our notation the number per unit of volume
of pairs of molecules, m and M, for which the variables lie

between these limits ¢, C’, with le—(f positive, is

’ Cr 7 ’ 7 ’ /d /
s Ff gy .. Al sy ... dpy/dQ) ... AP <L di.

Conversely if at the beginning of the time 7 the variables
% dt with reversed velocities,
they would at the end of the same time 7 be found within the
limits ¢, C with reversed velocities. We may call these reversed
encounters. The number of reversed encounters less the number
of direct encounters per unit of volume and time is

were in the limits ¢, C, ¢,

’ /7 ’ /! /7 7 7 /d /
ppuFf g s duadpy .. dpdQY ... AP 2L ay

d
— pupuEfigs ... dgusdps .. dpadQs ... AP, %P it

50. It can now be proved (the system being conservative)
that '

i ’ ’ ’ /’ Id ’
dg .. dg/aadpy ... dpi AQY ... AP, %L

=dgs... dgurdp, .. dpad@s... dP, 5.
For the accented variables ¢,’, &c. are all functions of the un-
accented variables and of the time 7. And as T is the same for
every system within the initial limits, we have

R S
dqll’__ply dqﬁ:—-}’z, g

where S is Hamilton’s Principal function for the motion in
question. Similarly

das S

EE =—P1 ‘Eé; =—Pa &e.

b L 2

A

27 g o

o

e ¢ S )
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Now writing d¢ for —=- ¢ dt and d¢’ for d¢ dt,

dq ... dg'nadd’dp, .. dpn'dQ ar,
=dg ... dgndP'AQ ... AQ,) x dp/ ... dp,/'d L/ ... dP,
=dg ... dQ'ndd'dQ ... dQ, dq, ... dgu,ddpdQ, ... dQ,
dp, d, ar,
EXF g
where the last factor denotes the functional determinant
dp) dp/ dp/’
dg, dg; T dg
dpy’
da,

...............

and since
, as dp, .ﬂ&.
Sdg’? dg, T dgdg’

the functional determinant may be written

s aw S
dgdq dg'dg, ™ dg/d¢’
s

dq;'dq'n ---------------------

------------------------------

In the same way
dql “ie dq-»..ﬁi(#dpl e dpndQ; s d.l’,»
= dql res dQn_1d¢d(21 er X dq‘, cee d(l’y;_l(l(b'(le' e er’

(lp. dp,
Tt dgy’ dgy' ™

and the funetional determinant has, but for its sign, the samne
value as before. Hence the continuad products of the differ-
entials are numerically equal, that is

g ...dg' nad¢'dp, ... dpy'dQy ... AP,
= d(_ll e (lq”-‘ld(#dz’l ane d:pnd(él e (ll’r ...... (18),

i
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and therofore the excoss of the reverse over the direet encounters
per unit of volume and time is

o (FF' = FF) s .. dinrdpelp, ... dpo X AQ, ... L%,
or

U oo Q.. AL S~ B i .. i lplpy ..

and is zero if in all cases  F'f' = Ff.

A corresponding equation holds for ZJ; . Seo further for this

proposition Watson’s Kinetic Theory of (Juses, second edition,
Arts. 8, 10, 12, 13.

51. As this property is true for all values of F and f with
the corrchomlmg F' and f', we see that if Ff" = Ff in all casos
where a pair of molocules can by oncounter puss out “of tho
classes F, f into the classes B, f7 respectively, or vice versa,
wo havo a suffictent condition for stationary motion.

The I theorem of Art. 38 can cusily be adapted to prove
that it is also a necessary condition.  Further we may tako
for solution of the equation Ff' = Ky,

Fe Qe fo (e,

whero T is the kinotic onergy of the molecule M, and 7" that of
m; and if T, 1" can be reduced to the sum of squares of the
velocitios, we got a result analogous to that obtained for clastic
spheres in Art. 43, namely that, as a consequence of condition
A, the mean kinetic onergy is the same for cach dogree of
freedom.

62. It is nocossary here to point out what further
assumptions, besides condition A, we have made concorning
our molecules in the above demonstration. We expressly
assumed in Art. 47, that each molocule left to itself 1 stable,
that is, that so far as the mutual forces between its parts are
concerned, the coordinates and momaenta, whatever values they
have at this ingtant, will or may, at somo future time pass
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simultaneously through the same values or infinitely near to
them, the coordinates #, y, z defining the position in space of
the centre of inertia being excepted. We also expressly assumed
that if two molecules pass into an encounter, they pass out of
it again, that is do not form a permanent union. We have
further assumed tacitly that each molecule is stable, not only
under the influence of its own internal forces, but also under
the influence of the new forces which may be developed during
its encounter with another molecule. Suppose for instance for
an m molecule f= e, where s is a quadratic function of the
momenta p, ... p, with coefficient functions of ¢,...qu. A
necessary condition of stability is then that s shall be positive
for all possible values of the p’s. And that requires that the
determinant of the coefficients in s, which we will call d, and all
its coaxial minors, shall be positive. See Appendix (g).

- — _p12
If s= a1—2—+b12p1p2+ &e.,
@ by by
then d=| by ay, by

............

Similarly in order that an M molecule shall be stable if left
to itself, we have if

F=¢7S, and S=4, fzf + By, P, P, + &c.,
A, B, By
D=|B, A, By |;

...............

and D must be positive. And so long as the two molecules
do not influence each other, the condition is that Dd shall be
positive, which is necessarily true if it is true for d and D
separately. But when the two molecules are within the sphere
of their mutual action, the corresponding criterion of stability
is that s+ shall be positive whatever values the velocities may
have. If A be the determinant of the coefficients in S +s,
A, and all its coaxial minors must be positive.
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But if we form the determinant A for the coefficients in
s+, it will generally during an encounter or when ¢ <0
contain constituents of the form pP. The condition may fail
for A, although it held when ¢ >0 for d and D separately.
So that the two molecules, though stable separately, may be
unstable together. The encounter may be the death of the
molecule. ‘

Nore on THE H THEOREM, Art. 42.

The H Theorem proves strictly that, assuming the independence of
the chances (Art. 17), T is generally negative. It is claimed for it, as a

physical theorem, that the diminution of A is analogous to the increase of
Entropy in irreversible processes. To make that analogy complete, the

chance of %t« being positive ought to diminish indefinitely as time in-

creases. I will state the difficulties that this view presents to me, without
saying that they are insuperable.

A finite number of molecules in a finite space are set in motidn at an
initial epoch at random, in the manner described in Art. 41, and then left
for infinite time, undisturbed from without, under conservative forces.

Initially % is almost certainly negative. After time ¢ the coordinates

and momenta of every molecule are determinate functions of ¢ and of all
the initial coordinates and momenta. If C, ¢" be two successive states of
the system, each in its turn a consequence of the same initial state, in
what sense is € less probable than ¢"? It may be that the initial state,
formed as we have formed it, is less likely to be ¢ than ¢”. But the
chance of state (' at time ¢ is not proportional to the chance of the initial
state being C. It is then improbable that the initial state should be one

in which %;E is positive. It is not proved to be improbable that it should

" be one, a necessary consequence of which is that oil_]t{ will be positive at
time ¢.

Again, the continued independence of the chances, if conceded,
attributes to every subsequent state of the system the same properties
as the initial state has, which would be right if the system were con-
tinually receiving external disturbances. Can it be conceded for the
isolated system? Let S be the Principal function, «, 2’ type coordina;gs
dz’ da’’
correlated or independent? I think it can be proved that they are

of two molecules at time ¢ If x=a’ nearly, are the momenta

correlated. If so, the formula 8 of Art. 37, expressing %’ is inexact.

And the theorem fails to prove %;g negative, except when the factors

F'f' — Ff are great, that is when A deviates widely from its normal value.
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CHAPTER 1IV.
CORRELATION OF VELOCITIES. FINITE FORCES.

53. I PROPOSE to prove in this and the next chapter that
in a system consisting of molecules of finite dimensions in
stationary motion, it is not true for molecules very near to one
another, that the chances of their having velocities between
assigned limits are independent, as condition A assumes: but
on the contrary if the forces be repulsive, they tend to
move on average in the same direction; and therefore that in
dealing with their encounters, or (in the case of rigid bodies)
their collisions, we cannot legitimately base our conclusions on
condition A, except in the limiting case when the density—
1.. the ratio which the aggregate volume of all the molecules
in unit of volume bears to unit of volume,—is infinitely small,
though conclusions based on condition A are approximately
accurate for gases under ordinary conditions.

In the present chapter I shall deal only with the case of
finite intermolecular forces.

Let m, &c. be the masses of a number of molecules in
stationary motion. Let «, y, 2 denote the coordinates of m,
o, iy, 2 those of any other molecule as m’. Let r be the
distance from m to m'. Let f be a function of » which is
everywhere positive, finite and continuous, which is of negative
degree except for very small values of 7, and such that

f dmr*filr is finite.
0

Then for any m, 2f is the suni of the values of f, referred
to the position of m as centre, for all the other molecules;

11
Hy
4

S
i
4

R




CHAP. IV.] CORRELATION OF VELOCITIES. FINITE FORCES. 47

and if p be the number of molecules per unit of volume,

3f = f darripfdr. Also Zr % has correspbnding meaning.
0

Eztension of Clausius’ Theorem.

54. We can now put the Clausian equation in a modified
form as follows,

d dz dy
dt{2m< dt+ydt+zdt) Ef} ......... @),

for the function within brackets has a determinate value at
every instant, and cannot on average increase or diminish with
the time, the motion being stationary.

Again for the same reason, .
o(lit { .df:c +2m Zf +Zm o Efz'} =0...(II).

Here the first = denotes that every molecule successively is
to play the part of m, and the second 2 includes all the
molecules except m each with its own «#/, 4/, 2/, and each with
its own f referred to the position of m for the time being.

Subtracting I. from II. we obtain

Em——Efdt ! Efdy+2

(@ >+<°§-’:> <f->}fff

+2m dtﬁ T SF (@ — o)+ Em an Ef(y y)+§)mdt2 SF (7 —2)

3 folt

+Em£2(w’ )df+2mdy2(y y) f
T -21C -z)-f=o ......... (T1I).

df _df dr

Aga.in " d 1 d"‘ dt
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And if N, g, v be the direction cosines of mm', or », drawn from
m to m’, ¥ —x=r &c., and

dr _do dy  d7

- P ata
d dy  dz
"(’”dt olt""’olt)

and the last line of III. becomes

da dy+ dz)( do’ dy dz')

af oz @z
Em2r o (dt+ Fat s M Tr et

_ ar ( dz dy  dz )
EmEr p N R TR
That is, since A = Ay = uv = 0 on average, and

A= ,u,2= y2=%

on average, the last line of III. becomes,

Emzrdf< are e (e d e E)
32 G {(a) + (@) + (@)1
Again, 2 dr -3 f 4y pr 4 dr

=‘ - —4s1rr3pf‘ "+ [amreprar + [4 arof 9 gy
= 2f by the conditions for f, if Zlg' =0.*

Again, (le =X, &ec.
if X, ¥, Z be the components of all the forces, whether external
or intermolecular, atting on m.

* If the molecules be scattered uniformly %:0 on average. If not

uniformly, it will be generally negative, because we take a molecule for centre,
and there are more molecules where p is greater. But (see Art. 106) it will be
small. If negative it helps my present argument, but I shall treat it as zero.
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Therefore — m El_t—‘ wa —z=X3f (o - x),

d;/ 3y —y=Y(y ~y)

dt’ Efz"’_—wz =Z3f (¢' - 2).

Making these substitutions, and arranging the terms, we find

d {zm L 5f @~ o)+ &c.} -

e (7da\: | fdy\? | (da)?
=—3f2m {(af) +(g) + ((T:)}
duw da’ d dy  de de
+em3f (G G+ S )
+SXSf(af — w) +IVEf(y — )+ 3L (< - 2)
df( dl/_'_,dz) (x(fw dJ+ 'd_{:)

3
+ZmZr FatVa) \Mdat Tt T dt

Lo [(de dy dz
+372m {(GT (G + (@)}
e s de do’  dydy dzdd
Thatis  3mdf (dt’ @t T dt de e d‘c)
+ XX (@ = 0) + XYY = )+ X3 (& = 2)

“ af dy  de da! dy | ds
+ 2mIr g <7‘dt +ogitra) Mt a T as)

55. Now if there are no intermolecular forces,
SXEf (o —w)+ 2YIF (Y —y)+ 222 (¢ ~2)
is for an infinite system negligible, and equation IV. is satisfied,
whatever f may be, by making
dw da’ | dy dy’ | dz de

G T dt T dtd= Y
dw cl;y dz\ /., da’ dy do
and ( g tegt? d?><>“élt+ dt*”dt)“o

on average for cach value of », and therefore for each value
of f. This expresses condition A, which thus appears as a
consequence of there being no intermolecular forces.

- A

-
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56. But if there are intermolecular forces, we shall find
that condition A cannot exist.

In the limiting case when the encounters are binary, or no
molecule is within the sphere of action of more than one other
molecule at the same time, we have

X3f (@ — @)+ YEf(y — y) + ZEf (¢ —2) = — Rrf.

In the general case consider a spherical shell of radii
7 ...7+ dr described about m. Let R be the intermolecular
force between m and a molecule m’ within the shell, 8 the angle
made with « by the line mm’ drawn from m to m’. Let f, be
the value of f for the radius r, and let 2, denote summation
for all molecules m' within the shell. Then if X, &c. relate
only to the forces exerted on m by molecules within the shell,

X3f(a' — 2) = — f,.Rr (2, cos O),
the mean value of which, if the molecules be distributed through
the shell at haphazard, is —} 2, Rr.

Again X includes, not only the forces acting on m due to
the molecules in the shell »... »+ dr, but also all other inter-
molecular forces acting on m, eg. forces due to molecules
within the shell »... #" + dr’, which forces we will denote by
R'. The part of X2f (2’ — ) due to these forces is

~ frRr3, cos 03, cos ¢,
where 6 corresponds to # above. If we assume
50802, 080" =0..cccciiiiiniinnnnn. (1),
on average, we shall have
X3f (s — ) =— 43, Rrf.

But whether X3 f (2’ — #) be equal to — }3,.Rrf or not, it is
nevertheless negative, and not zero. What has been proved
for X is equally true for ¥ and for Z. So that

X3f(d —2)+ Y3 (y —y) + Z2f (7 — 2)
is in any case negative, and in the limiting case of binary
encounters, or wherever we can assume (1), is equal to — ZRrf.
Since, as we have seen, in equation IV. the term
SX3f(z' — ) + &e.
is negative and not zero, it follows that the sum of the remaining
two terms, that is,

e
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de da” d by dy’ dz dz’
ZmZf (dt da Y asdr Tar dt)
df dy , de\ /[, do d?/ ds’
M (’” at T dt*”dt)(" 2Rt )
is positive and not zero. But this is inconsistent with condition
A. It follows that we must discard condition A when inter-
molecular forces exist.

57. First solution of equation IV. Let for any value of »
de  do’ dy dy’+dz, de'
(dt g T arrde Y @ di
where ¢ is a function of r such that 4mrip, and therefore also
4rr’¢f, vanishes at cither limit, when 7 is zero or infinite. Also
assume all terms of the form ((ii ojlyt &e. to be zero on average.
Then as in Art. 54,
df (, da | dy dz> do’ &y de
mar g (VG e a) VGG E)

= }3¢r a{,because N=p=ri=y

) 4mripd on average,

° d
=3 fo 4mrpd (% dr

) \ o0 \ d
= -f 4y p¢fdr—-%fo dmrip -Cgfdr,
and using this in IV. we find
SXSf (& —a) + &c. —g,zf drrp j’fdrno

which is satisfied by assuming for every »
X @ =)+ Y —9)+ 2 (7 =) = pmrp 9P,

also f 4mrppdr =—§ f 4nrr’p Sb dr,

whence [ dmrripgdr = 3 Rr,

in all cases in whlch we can assume (1).
Second solution of equation IV. Since f is arbitrary wo

df

may equate separately to zero the term in IV, mvolvmg " dr
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and the sum of the two terms involving /. That is, we make
for each value of 7,

alx dy  dz\/, da dy’ dz’ 0
2 <7” P T olt) (7‘ g T dt v olt) - (IVa),
dz  do’ dz/
s
and ™ {dt >t 2’ dt ;% dt}

+ XS, (@ —2)+ er(y —y)+ZE,.(z —2)=0...(IVb),

in which X includes the intermolecular forces acting on m due
to molecules at whatever distance, but 2’ —z, &c. relate to a
particular distance 7.

The result (IVDb) and the first solution show that the
velocities of m' molecules distant r from m are correlated
with that of m, or

dz o do’ dy dy  dz o d7
m(dt S — ¥ dt “’TE-}'dt X, dt>>0’ on average.

And the correlation is a function of 7.
In this solution 47r%p¢, and in the former one — %4’7rr°p d¢

is a determinate part of the Virial of the intermolecular forces
acting on m, though not necessarily equal to Rr, except in
cases where (1) can be assumed.

When r exceeds the “radius of action” of the molecule m,
and so R =0, X nevertheless includes the 2 force due to
molecules distant ¢ from m, for which R’ is not zero. But
ultimately as » increases, X, cos 6 3,-cos =0 for all values of
7' for which .R' is sensible. So that as 7 increases,

2

" TE + &c. becomes in any case zero.

But the correlatlon may possibly retain a sensible value at
distances from m greater than its radius of action.

Equation (IV a) expresses that although the velocity of m
is correlated with that of m/, yet it is not on average correlated
with the velocity of m’ resolved in direction mm/, that is not

da’ dy d .
aTrE T For (IV a) with (IV b) the
simplest, though not perhaps the best, solution is the following.

correlated with A




1v.] CORRELATION OF VELOCITIES. FINITE FORCES. 53

If mP ropresent in magnitude and direction the velocity of
m, and if it be taken for polar axis of a sphere of radius r
deseribed about m as centre, then the average motion of
molecules on the surface of that sphere is on the meridian
towards 22, and proportional to the sine of the colatitude.

68. If the force R be attractive instead of being repulsive,
dz do’
dt dt
of m and m’ may be said in this case to be contrarelated. If
there be two sets of molecules, 4 and B, and every A repels
every other 4, overy B repels every othor B3, but 4 and I
attract each other, the system will tend to form at every point
two streams, the A4’s moving in one direction, and the S's in the
opposite, which we may comparo,

+ &c. will be negative instead of positive. The velocitios

‘gl parva licet componere magnis,’

with the mutually attracting and repelling eloctricitics supposed
to constitute an electric current.

It should be noted that for any molecule m,

v (dw glm’ )
im> <dt dt + &e. |,

the summation including all values of 2, iy if (1) be assumed
equal to the Virial, taken as positive when the forces aro ro-
pulsive, of the intermolecular forces acting on m. (Sce Art. 85.)

I have trcatedfl cilw as zero in tho absence of intormolecular

forces. Strictly, » the number of molecules in the system being
finite, and the contre of inertia at rost, it must be negative, but
it may be neglected when n is groat.

69. I havo thus proved that if thore be finite intermolecular
forces, condition A. cannot prevail, and
dodsl | dydy | ds d
dt dt ~ dt dt " dt dt

e T
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has on average a finite value, a function of », and is positive if
the forces are ropulsive. The investigation does not apply to
elastic spheres, in which the intermolecular forces are infinite
during collision. I shall thercfore devote the two following
chapters to proving the same thing for oqual elastic spheres by
an indopendent method. It will bo, I regret to say, a much
more laborious method.  If however the reader is now satisfied
that I have established my case for finite intermolecular forces,
he will have little difficulty in provisionally taking for granted
that the same thing can by some means or other be established
for the limiting case of clastic spheres, in which the forces
become infinite for very small values of . And omitting
Chapter v. proceed at once to Chapter vi.




CHAPTER V.
CORRELATION OF VELOCITIES. ELASTIC SPHERES.

60. I PrOPOSE in this chapter to prove for elastic spheres a
proposition corresponding to that proved in the last chapter for
molecules between which finite forces act. The clastic spheres
shall be each of unit mass and diamnctor ¢. The same pro-
position for spheres of unequal massos or diametors is much
more laborious, and whon proved does not bring us much
nearer to any probable form of molecule.

Bqual Elastic Spheres.

Assume tho chance that a group of # sphores shall simul-
taneously have component velocitios

a ... o+ doy
B ... B +dB, } for the first
71 " -+ d’)’x
oy, oy + day,
Bu oo Bu+dBy + for the nth
Yn Yn + diyn

to be Ceday ... dyp.

If we assume condition A, we virtually assume that
@=2(+ £ +v).
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Now it will be found that when the diasmcetors are finite

the motion is not stationary whoen
Q=23 (a*+ B+ 1),
but becomes stationary when
Q=3 (a+ B* + ") + ZZb (aa’ + B + ')

Here a, o, &e., are component velocition at the instant con-
sidered of any pair of spheres, and b is a function of the distance
between them at that instant which, except for very small
distances, iy ovancseent. T admit of course that given con-
dition A always existing, the distribution of velocitics among
the spheres denoted by e~ @ 8% iy not disturbed by collisions,
That hag been proved many times.  But the point is that
condition A iteelf cannot continue to oxist when collisions
take place. In order that it may continue to oxist, it is
necessary that the system be continually recoiving disturb-
ances, or clse that the dimmeters of the spheres shall be
infinitely small, so that no collisions occur.

Definitions.
61. Lot £ bo any point, » the distance of any other poing

from L. Lot f be a fanction of » satisfying the following con-
ditions, namely,

(1) fis equal to unity at all points within a small sphere
of radiug « deseribed about, £ as eontre,

(2) [ i finite, positive and continnous everywhere,
(8) S s of negative degrea at wll points outside of the ‘o’
o
sphere and such that the series denoted by %/, or f drri fdr,
@

. . . . 1
is ulbimately convergent, but containg no high powers of .

We may take for ‘¢’ the radius of a sphere which on
average containg one moleenle,

N gt v o Ny
af 28 2/ L,
Lot now £=7T5%, 9= ‘:/",' oo X7 the  sunmation in-
-~ Wt Bl
cluding all the moleeulos of the system, and f having for cach
moleculo the value proper to its distance from 22 Then £ 9, ¢

are continuous functions of &, y, z, the coordinates of L.

et e s ke o

4o

TS
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Lot M. = [[[dodydzny (% + %) in which <g—§ + j—i) is the

value of that function at a given instant within the element of
volume dadydz, ay is the value of the product ery for the
molecule (if any) which is within that element, or the sum of
those products for all molecules within the element if there be
more than one, and the integration includes all space. Then,
for any element of volume, ay changes from instant to instant
by the passage of molecules into or out of the element.

There are two analogous functions, namely,

,,y_fffdxdydz aB< df d"’)

M, = f | [asdydz gy (d” ‘Z)

‘and also three others of the form

Mm=fffdxdydz o2 %&c.

It will be sufficient in this chapter to deal with M, and we
may for the present drop the suffix, and write M for M,,.

Summary of the Argument.

62. It is necessary first to treat of the case in which the
molecules, though possessing finite mass, are of infinitely small
dimensions, so that collisions between them will not occur.
That being the case, the system will be in stationary motion if
the velocities are distributed according to Maxwell’s law, @
being a sum of squares only. This we may admit whatever
views we may hold as to the possibility of any other law. I
shall assume Maxwell’s distribution to exist. It follows from
@ being a sum of squares only, that the fact of any molecule, or
any group of molecules having any given velocities, affords, if
the whole number of molecules be infinite, no presumption
whatever with regard to the velocities of any other molecules.
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‘Wo then find for this system the mean values of £, (%)’, &e.

In this system of matorial points dé?u 0, which gives rise to

cquations 4 and B below. It is thon proved that if, with the
same masses, the spheres have finito diamoter ¢, so that collisions

aM . . .
oceur, - 7 » which was zero, bocomeos, if £, &e. rotnin tho same

mean values as before, positive, and the motion not stationary.
But the motion must become stationary. Therefore in the
system of finite spheres £, &c. cannot retain the same mean
values as before. It follows that in this system @ in €49 cannot
be the sum of squarcs of the velocities only.

A System of Material Points.

63. The chance that the molecules shall at any instant
have for their component velocitios in @, a ... o, + da, &e., is
Ae ™ da, ... day,, where 4 is a constant and in tho system now

considered
@ = o + o + &c.

But from Art. 61,
dnfp = Ezf"‘ o fy = o = ey frrmse

It conduces to simplicity to assume fi, =1, but, as will be
seen, it in no way affects our conclusions. That boing assumed,

on = EXf — o, fi — oy fy — &c.
Substituting this value for a, in ), we obtain
Q=ECE P+ +/2) a’+ (L4 ab + &e.
- 2h o EXf — 2f o EXf — &c.
+ 2f1 foutta + 27 faona -+ Soc.

If we now intograte ¢4 for a, ... a,-, successively with limits
1 o0, wo get the result next stated.

Let D be the determinant of the cocfficionts in (), each of
the coefficients of products being divided by 2, that is

L3
?
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EF )y =AY =f3f.
= | =AY (LS S
=L S (LRSD).

------------------------------

Lot Dy, be the minor formed by omitting the pth row and
gth column,  Similarly lot Dy, be the minor formed by
omitting rows p and 7, and columns q und &  Then by iut;u-

grating for a, ... ay-y, @ is reduced to f)u E , whonee £ = 2, D

See Appendix ().  Also by integrating for ... ty—y only, Q is

reduced to

D D
*1) ! al +J) . alf'*"&l)ln Eg

Again we find (sce Appoudix (¢))
Dy= | 2 fd s [ =20 since fl == 1,
-I)m-.u = Ef“ __f;n,

Dysy =/ for (19).
Dy = Dy = &o. = D) = (Sf),
Dy = — 1.3,

We have then for the chanco that « and § shall lic within
assignod limits irvespoctive of the values of ay...a., the
exprossion Ae~*de,df in which

Q' = qa* — 2pa,E + ¥,

o L2 (1’11”)’ _
and S f = q, S —f’ =p, and /- = P,

We seo now that the assumption £, =1 has not Mfoubcd the

Nis

result, becausoe writing Fi for £* doos not alter p, ¢, or .

64. Let now £ be the value of that function at J° the
origin, £ + 0f its value at a neighbouring point 1. Then at

P, e hecomes e~ + 0§ 0‘;&, e, And if £ be very small, this

is equal to e (1 + 2hpa,dE).

50 R, P O ne A

i

s e
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But if at L, £ is not negligible, we must use instead of
a, B, v the following functions, namely,

u=a—§ v=8-19, w=y—{ whence a=u+ £ &e.,

and V=qu+E—2put+EE+rE,
or Q=qut+2¢—pEu+(qg—2p+r) &,
and let e = (1 §)

‘Then if ¢ (w§) be the value of this function ab P, ¢, (u§) its
value at 1%,

bWl = D=F b (ub)

Again, let ¢ (u) duw be the chance that at £ w shall lie
between w and u + du, whatover £ may be, that is

s=[ dp@)

and the same chance at £ is

b (0) = f :dfcﬁ (wE)+ 0 f :(15 jg b (0 E).

o o =(j)ew - o,

if ((;lg) denotes differentiation with w constant. Therefore
o) l o t
tu) - s =8| de(g)swp-08[ dt g g0t

But f :df (éig) (1 £) =0,

because ¢ (« ) vanishes at eithor limit.  Therefore

¢ (u) — b (u)=—0f f ldg (zl'lz”b $(ué)

=0 [ dEg (u §) 3 qu+ g = k).
And this is proportional to
e NN WDE,

}\ o e A £ < 2 :

B,
- g R
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. / Xy
if M=l spy s - opyy

whence ¢, ()= ¢ (u) (1 + 24 woE).

65. Now with the above definition of M we may write

fJ-l——'M—~= 0, that is

dt
[t (284 5) 8o+ e (54 85 w0

the summation being for all the eloments of volume, each with

dg  d¢ )

its own ay and its own (33 + de )
Now we shall find that on average 'jt ay is of the opposite

sign to (dE dé") , and - i (d,‘f dt) is of the same sign with

A dz  d
dM . - . . s vy s
ay. So that U consists of two series neither of which is zero,

but which are equal and opposite.

66. Let us consider the plane of @z, and £ as varying

in direction z, { as varying in direetion a.  Let us first deal
oy d . o

with £ only, Consider the two infinite plancs z=0 and

dz

. d
2= dz, and suppose for a moment £ constant between them.

dz
The number of molecules at or near the plane 2= dz for which
u, or a— £, lies botween u and w4+ du oxceeds the correspond-
ing number at or near the plane 2 =0 by tho quantity
A du2h v flE dz.
z

That follows from Art.64. To fix the ideas let u be positive.
Let us separate from this class of molecules those whose 2
velocity is ry, and suppose ¢ negative. Lot us then call the
separated class the class (wy). Then the number of molecules
of the class (wy) which pass through the plane z =dsz per unit
of area and time exceeds the number of the same class which

§
£

oo T

e S e o T
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pass through the plane z = 0 per unit of area and time by the
quantity 4e ¥ ety d-u‘Zh’wyggdz. And the number of mole-

cules of the class (uy) which enter S the space between the
planes per unit of time exceeds the number of the same class
which pass out of § per unit of time by

— SAe e dudy 2y B,

which is positive because uy is negative.
If SNdudy be the number of the class (uy) within S, we have

dN X dudy = — A 7 dudy2Wuy % . (20).

But if uy be the mean value of wy for all the molecules within
S, v and y now taking all possible values,

il f f J::wadudey / f f:Ndudy,

and therefore

dtwy f[ufy Fn d’wclfy/f Ndudry,

because 7 f Ndudy =0 on average,

-4 f f ey O e dudly Zz’lg by (20)
1 df
2hdz’

I have assumed in this proposition that the space S within

which E is constant, is the continuous space between two

infinite parallel planes. That will not occur in fact. But it is
not essential to the argument that S should have that shape,
or that it should consist of one closed surface. The proposition
holds equally if S consists of all those elements of volume for

which at a given instant (—Z—g has the same value. And it is true

dz

on average for each element of volume.

P

et

S i A o Ao
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. d— d ——F—

67. Again, cTtury=—c—l—t(ot-~E)ry
d— dz

=& &

Now a molecule moving within S with positive y moves

from less to greater £, df bemg positive; if with negative

v, 1t moves from greater to less £ For all molecules moving

within S, c%t vEis positive and equal to v* % . If S be divided

into parallelopipeds of base dzdy and altitude PP’
[[[7 % dndyas = [[ & - &) dod,

£p and £p being the values of £ at the upper and lower surfaces
of the parallelopiped. By the motion of all these molecules
€ is increased.

But at the upper end where £ is greater, molecules with
positive ry pass out of the space, at the lower end they pass in.
For negative ¢ the converse is-the case. By these entries and

exits £ is therefore diminished at the rate f f v (Ep — Ep) dzdy,

or by the same quantity by which it is increased by the motion
of the molecules within S. On the whole therefore if £ alone
vary

—_ — d—
And z—lia'y=c7tu7+¢?l§7§

We have then from Art. 66,
4 LdE
=T ohds
.. . d — 1dg
Similarly, if ¢ only vary, pr sy o
and therefore if £ and ¢ both vary,

L= (B D) (21),
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and (A) becomes
U dadyds {(Zf +3§) dt*7 " 2h (fg +ﬁ)} 0 ...(B).

It follows that ay jt (ZE + 29 must. be on averago positive,

g, dt
and equal to 9h ( ot d:r) .

{
68. We must however consider the value of di (;E-p Zﬁ)

more carefully thus:

Let P, P’ be two points on a sphere S whose coordinates
referred to the centre (! are respectively a, v, 2, and a, Y =350
that PP’ is an edge of the parallclopiped, whose base is dady
at @, 4. Let &, £v be the values of £ ab P, P’ respectively.

Then if S be the volume of the sphere, and ({f the mean value

of E within the sphere,

ie l
S Z%: = f f dedydz ((Ii = f f dudy (§p = Er),

the integration dadydz being thronghout the space S Lot the
radius of S be ‘a’ (Art. 61). Then wo may take {(E an equal to

dE at C.

Suppose a molecule at (! whose velocities are o, 8, . The

df due to the motion of that molecule

dz
is (a (Td“w+ Bgy_{'(yc(lé) ff dady (£, — Ep). The change due to

the motion of all external moleeules in zero on averago.
Let now f be the value of freferred to P as centre, Then

Er = 'd‘,-;f.‘ And let f be the value of f reforred to P’ as

centre, so that £, = 2f'a Then due to the motion of the

L

change with the time of S

molecule at C

im0 == gy (n o8 gy 4 1) (0 %)
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because on average - Zf 0 &c. The minus sign is here

f

required because f is referred to P, and therefore P has the

opposite sign to that which it would have if referred to C.
That is, L= 2%

“dz” rdr
Now to form equation (B) we shall have to multiply by ay.
And that will make the terms in o, B disappear, because
ooy = aBay = 0, on average and therefore on average

—ay g Eo— ) = 5 (L),

And therefore .
Sarycgigf oy? ‘jffd dy(dz %)

the integration being over so much of the plane of zy as is

ddf_ ., 11df &f

within S, that is — ay - dds = oy? Sfade’ da

f

being the value

When r=a.

By symmetry
. — ddf _ o 11df
Y do =" Sfada’
It follows from (A) and (B) that in stationary motion of
the medium of material points on average

a - dg | dgy:
— 2a% SFada— ( PR dw) ............... ©).

Case of Spheres with Finite Diameters.

69. We now pass to the case in which our molecules,
instead of being material points incapable of colliding with each
other, become equal elastic spheres of finite diameter ¢. It will
be shown that as the result of their collisions with each other,
aM
"EZ >

2 )
so long at least as £, (%) , &c. retain the same values as before,

which in the system of material points was zero, becomes,

B. 5
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positive, and the motion not stationary. It is worth while to
show first in & general way by the aid of a diagram how this
offect is produced by the collisions.

2)

-

R

Let us take the planc of the paper for the plane of as and
suppose £ alone to vary in s, ‘éﬁ being at a given instant
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positive near a certain point. That being the case, there is at
the instant in question near that point a mean motion, or
stream, of the molecules in direction # increasing as z increases.
We may suppose this instantancous stream to be positive for
positive values of z, negative for negative values of 2. It is
indicated in the diagram by the long arrows.

Let us consider two kinds of collisions, (1) and (2), the
directions of motion of either sphere before and after collision
being shown by the small arrows. For simplicity these directions
before collision are here drawn parallel to .

If we examine collision (1), we see that the molecule which
before collision was moving towards positive « is detlected
upwards, e towards the positive stream, and the molecule
which before collision was moving towards negative « is deflected
towards the negative strcam. In ecither case the effect is to
increase the stream pro tanto.

If we examine collision (2) we see that the reverse is the
case. The effeet of the collision is to diminish the stroam.  But
d

now, -;> being positive, there are more collisions of the kind

dz
(1) than of the kind (2) per unit of volume and time. And
therefore collisions tend on the whole to increase the stream.

For the same reason, it will be found, they mako djtl positive.

It is true that in a rare medium the effect here indicated is
very small. But the question is only of its sign, not of its
magnitude.

70. Since every collision changes the dircetion of motion
of the colliding spheres, the expression in Art. 66 derived from

(% 2) &

cbntains, in addition to the result calculated in that article,
a new term derived from collisions which woe have now to

calculate.
H—2
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Let V be the half relative velocity of two molecules, A, u, v
its direction cosines before collision, N, u’, v' after collision.
Let AV="V,, vV =V,. The number of collisions per unit of
volume and time for given V' is 27¢® V. Hence, for the change
with the time of V,V, due to collisions with given ¥V, we have

2wt V. V2 (MY —\),

the bar denoting mean values. We have now to find the
values of A2’ and Ay for all collisions, given V.

At the instant of collision let the centres of the two colliding
molecules be 4, B; so that AB is the line of centres. Let BD
be the relative velocity. Or, if DZ = BE, one molecule has
velocity DE, and the other BE, in addition to the velocity of
their common centre of inertia, whatever that may be. Let
the angle DBA =6. If A0= B0, O is the point of contact.

Let BX, BZ be the directions of the axes of  and 2, and let

the angle between the planes DBA and DBZ be ¢, and the
angle between the planes DBA and DBX be ¢'.

Then, if %, y, z be the coordinates of A referred to O
as origin, and if the direction DE be that of \, u, v,

z=——v§cos 0+§c\/1—:§sin€cos¢,
e (22).
x=—7\%cos 0+%\/1—-M‘sinecos¢’

The complete definition of ¢ shall be this:—
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When the plane DBA, turning round DB, contains the axis
of 2, =0 for that position of BA which makes the least angle
with the axis of positive z.  And ¢’ has a corresponding defi-
nition for the axis of # (sco Art. 72, post).

71. If &, & be the values of £ and {at O, then at 4

f—fo=%(—vcos 6 +V1 = visin 6 cos ¢)le§
ag
dw

¢ o (23).
¢~ &y =5(—Ncos 6 +¥1—Nsinf cos ¢)

Then by the same reasoning as employed in Art. 67 the
number per unit of volume of pairs of molecules whose com-
ponents of half relative velocity are

Voo Vet AV, Vyy oo Vyt dVy, Vi Vi +dV,

is at 4
b ST pa yers —
P «/—7% W2 IV AV, AV, AV, [L+4H Vo E— £,

Here owing to the variation of £ in ¢, V, is involved asym-
metrically with respeet to V;, and V. Lot us suppose now V°
constant, but the angles 6 and ¢ to vary. The gencral mean
value of V,V,is of course zero. But the mean value of V,Vy,
given V, in the asymmetrical system iy to be found by integra-
ting the above expression according to 6 and ¢, and is not zoro.
Let us denote the mean value of ViV, or Aw V™, for all values
of 6 and ¢, V being constant, by (V,V3), the mean value of the
same function when V also varies being denoted by ViV, We
have then, treating £ alonc as varying,

Ve i . - ,
(VoVay=— [ 25in0 cos0.d0 [ ap (1 + 4k Va (€~ £)

in which £— £, has the valuc given in (23), and the gencral
means of fanctions of V, and V,, or AV and »V, arc taken
after integration according to @ and ¢. That is, writing Vu/V
for A &e.




70 KINETIC THEORY OF GASES. [cHAP.

im
(VaV)= Vszf 2 sin O cos 8 4O
0

L 7,28 (" a0 "ap 2sindoon 0417~ Vocont
+;Vsz—zf0 d6f0d¢2s1necos94h2( 7 cos

+N—/—IZ’-’2—I;-—ZZsin 0 cos ¢> %
4h'c V2V dE

s—g T g s eerraiaaen (24),

because the general mean value of V,V,, or AvV?, is zero.

We have thus proved that, on the average of all colliding 1
patrs of spheres, (V,V,) is before collision of the opposite

sign to fl—i or % This does not depend on the result of L
collision. It is therefore true if, instead of being elastic spheres,

the molecules be centres of force, or whatever be their form.

72. We have next to calculate the mean value for all
collisions of A'V/, or the value of Av after collision. This will
depend on the form of the molecule, and we shall now deal only
with elastic spheres. It will be found that A%’ is of the same

sign with (lef lei)

We use the same notation as before. When the plane DBA
turns round DB until it contains the axis of 2, let 4,, 4,, which
are on opposite sides of DB, be the two positions in which that
plane is cut by the circle which 4 describes. Let 4, be nearer
to the positive axis of z than A,. Then, for 4,, $=0; for
4;, ¢ =m. Similarly, when the plane turning round DB con-
tains the axis of z, 4, 4, are the two positions of A in that
plane, and, if 4, be nearer than 4, to the positive axis of xz,¢'=0
for 4,, ¢' == for 4,

Let e be the angle between the plane of DB and z and the
plane of DB and z, so that ¢’ =¢ —¢, p=¢'+e. It will be
seen that, if A» is negative, cose is positive; if Av is positive,
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cos € is negative. In cither case
cose= , M sine= P
V1=Vl =’ V1=NW1 =
wo have then, to find A and »/,
¥ = — v cos 20+ 1 — 12 uin 26 cos ¢, }
N =~ cos 20 -+ VT =M sin 26 cos ¢’

Whonco,'substituting Vo for X'V, and V, for v'V, we derive
the two symmetrical systems

Vy == Vycos 20 + ¥ V,* + V, sin 26 cos ¢
Vy =— Vyecos 20 — V sin 26 cod ¢
’\/ V V ’ »
oy b...(26).
V, == V,cos 26 ~ ’\/V,,“ +'V; sin 26 cos ¢
Vi == Vycos 20 4+ VPV, 4 V! sin 260 cos ¢’

The term involving sin e will disappear in the subsequent inte-
gration, and is omitted. The above systems hold for all values
of Vyand V.

78. We now find that for given V, taking into considora-
§
d H
g "
(levz/) = }‘;[ dof d(f) 28in @ cos 0(1 -+ 44h’V' E__ E«))Vw’V".

le ‘V/
But with the above values of N, ¥/, or Vo "V ,

tion only the variation of §, or -

f def de 2 sin 0 cos OV, V' =0,
0 0
ag is easily seen. Therefore

yr " :
(VS V)= 1 ao f de 2 sin 0 cos 0 4h' V6 —E, V., VY
m]o 0

1, (o ("
_;4)‘&0/0 d6f0d¢ #in @ cos 8V,

x{—»?,»cosﬁ-}-«/v ;; Y. smﬁcoscb}V V,’gg
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{
1

by (28). In this expression we have to substitute from (26)
the values of V,/ and V), and integrate according to 8 and ¢.

4 To effect the integration according to ¢, we reject odd

powers of ¢, and for cos® ¢ write % We have then

| (vev=% G site[ a6 [[apsin0cos o7,

A

VO —

‘ v, + 7V,
x{——l-,-c050+ —

__ﬁzu'f def d¢ sin 6 cos OV, FGH,

—sm&cos:p} ViV,

gt

a where F= {— T%’cos 6+ !K—I;tz sin 6 cos ¢}
—_— A
; G=(—TV,cos20 + ¥V + V7 sin 20 cos ¢), i
« H= (—chos29—~—/~%:——?—’—ﬁsm29 cos qS),

2 2 i
or(Vx’Vz')='-df4h' V.7, f sin 6 cos? 0 cos? 260 d0
0

¥

2
+ g TV s V 5 f sin 6 cos? 0 sin’ 20 d6

V2A(V,}? ¥
_ jl_l_;g' Mzc_.r_g%f"'_vu_) %f sin? 6 cos 0 sin 20cos26d6

2
+ lef 4h'c Y—«—Z— % f sin® @ cos @ sin 26 cos 260 d6

2 2
- % 4h'c —V;”Vlf’—f sin 6 cos? 8 cos? 26 d@
0

272 g
+ fl_i 4h'c .V_“VZ’ i—f sin @ cos® @ sin? 26 d 6

SR ——————— O 3

{:43},,’ V’V%{ sin? @ cos 6 sin 20 cos 20 d0 ]

E 2V2
+ 4h'c —=—= & f sin? @ cos @ sin 26 cos 260 d6

Rt L g
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277 2 pes
+ 0—l§4:h’c KEVK‘— $ f sin? @ cos @sin 26 cos 26 d6
0

dz
_dE,,, VSV -114+12-4 df o2 e
...d—zihcv 35 'd4’h 7TV
v, 1 V2V 1
but V*=3 "%, ~ 3.5
Ty
or ViV=5. K’—‘VI—IL
Hence the expression becomes
dEM, V,2V:—11+12~4+10
dz V 3.5.7
_ 1 dg,, V)V;?
= ﬁ . —; 4h'c -—"'-[—f— .
. d¢ I d
By symmetry if we treat 5, 3 varying instead of 7 e
obtain the expression
1 d¢,,, V.SV.;'
LT
and therefore, given V,
, , V2V (dE | dE
v = gpae (G +5).

And therefore comparing this with (24)

VSV = (V, V)= 4he V;V2<3+3 5)(§§+Z§) ...... @),

74. To find the rate of change with the time of V,V,
given V, we multiply the last expression by 2wc’pV (V being
the half relative velocity), that is by the number of collisions
which take placé with given ¥ per unit of volume and time.

Let us denote the change due to collisions by Z%
The result is, given V, ‘

TV =8mep (g +575) V2V (4 )

e
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And then we introduce the factor

2_}"_ 2h WV T2V GV 4V, AV,

m T
and integrate for all values of V,, V,, V, and so we obtain

“5i(5+55) o (3 + )

0
a_t sz
75. This being the value of' 0 V +Vz what is the value

of 7 (wy) ?

If U,, U,, U, be the components of the common velocity of
the two spheres, a, B, o the velocities of one, o, B', o' those of

the other,
o= U3+Vz, a’=Ux_Vx:

B=U0,+VvV,, pB=0,-7,
'Y=U2+Vz: ’)”=Uz_vz-
Therefore ay +o'y' =2 (U U,+ V, V).
Hence since Uy, Uy, U, do not vary by collision,
0 ’ a 7 1
a—t(a'y—i-ary)=2ézV,,Vz ............... (28)

It follows that on average of all collisions

0 0 w—r
3 (ay) =5 ViV,

1 1 dE  d¢
57 (5+335) @+ &)
and therefore on average

(jf d§> s =g (3 +5 ) (35—*- lefo) ...... (C).

76. We have next to consider the change in the term
d
oy dt< é’) due to the variation of a, or ¢ by collisions.

As before let us treat £ only as varying. Let us use the
construction of Art. 68. Consider two spheres in collision

i (M

ST T e
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their point of contact being at ¢ the centre of the @ sphore.
The 2 ordinates of their centres are

%(-—vcoa 0 41 —vsin 6 cos §),
and % (= v 008 6 + T — p*sin 6 cos ¢).

To find the value of E,. due to the collision, lot us refer f

to the point P. Its vu,luo at the point of contact being f,
its value at the centres of the two sphores respectively is

S+ % (= veos 0+ V1 —vtsin 0 cos ¢) ?tg’
and f- ; (= v co8 8 + V1 = P sin 6 cos $) g{ ,

with corresponding torms in 4 and df which will disappear

dw dy

on intogration,

Now for the first sphere @ iy increased by the collision by
Vi~ Va, for tho second it is diminished by the same quantity.
Therefore as the result of this collision

ofp=10 };3{ ;f ddf(—- 1 ¢08 0 + N1~y sin 0 cos d)(Vi = V).

For the minus sign here introduced see Art. 68.

Substitute for Vi — Vy its value from (26), multiply by
2 sin 0 cos 6, and intogmbo according to 6 and ¢. That gives

30y == 2 o Vf daf dg 2 sin 0 cos OF G,
where F={~ v cos 0 + V1 ~2*sin 6 cos ¢},
Av oL
G = (-x 2cos? 6 — - s in 26 cos qb) .

. . __ 8 df
‘ That is },ﬁE,,‘——igcdzMV.
Now multiply by 27¢*pV, the number of collisions given V'
per unit of volume and time. That gives

0k, _ _ 16 1df
5 =~ 15 VaVeysiye
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- 0Ep: .16 1 df’
Similarly ~Oft1 == 7wV, V, s Sfdz
af  df’
and ot qo fl”)“‘ls P Ve V‘\f(dz"o‘tz‘)

and 5 fdadJ(Ep-Ezw)—— rWPVfod“dJsf<df df)

16 1 1ng .

where the integrations arc throughout the soction of the ‘g’
sphere made by the plzmo of zy, 8 is the volume of the « sphore,

and — -O—l[ is the value of - df when » =a.
o da r dr

d
But Sffd(l)d:l/ (Ep - fp/) = df,
as in-Art. 68, therefore

0 df _ 16 1 1df
otde — VeV Sfada’

2 df _ 1@ 11df
dtds =" 18PV 550 o

o (dE  dt 32 11df
and ot <—_ + d;) mpVeVs 5 Sfada

This expresses the change of f + i duc to collision between

Similarly

two spheres. Let a, B, v be tho velocitios of one of the two
colliding spheres, o, 8, o those of the other, '

Then oilJ;I containg the two terms

vl ag) + v 5 (F "‘-)

But a=U,+ Ve - Vy
v

=U,
=U,+ Vz = Ut -
as in Art. 75.

Therefore (ay +a'y') V,V, =2 V.V on averago,
because U U ViV, =0 on average.

i
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Therefore for cach sphere separately

dg  dfy 32 srral df
7 ot (dz * :) 15 wp V'V, @ dg O MVerage

J1df

ada’
because = USUR+ VAV UV EL UV
=4V V! on average.

- 185 ,n-capa"y

We have then on average, rememboring Art. G8 ...... (©),
af  ag\_ 4 1 (dE dt
oy (dz ' dw)“us e zh<dz+dw> """""" ().

Adding this to C,, we find for the term in (Z[ due to collisions,

=2 vrcpf[fdwdf/dz ) (d{: Zi) ...... (Gy).

Wo intcrprot this as follows. As the result of collisions,
molecules moving in a given direction, as that of @, are on
averagoe deflocted towards that side where tho average motion
of the molecules, that is tho stream, is for the time being in a.
And so collisions tend to increase tho stream, Compare Art. (57).

77. Now roferring to equation (A), we sco that (f;l[, which

in the medium of matoerial points was zero, and 8o the motion
stationary, has, when the spheres have finite diameter, bocome
positive, namely

(1_1!{1 - f f f deedydz {a'Y ““““ (:55 iﬁf)
o (Z’f + gi)

+2mop o b oy (gf 35)} ............... (D),

of which the first two terms are together zero, as in (A), and the
third is positive. Thereforo if in the system of spheres of finite

om0 by T

I A o 5 O
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diameter <%§)a &c. have the same values as in the system of

. .. dM. o\
material points, s positive.

But in stationary motion % must be zero. Therefore in

. . . dE\®
stationary motion of the system of finite spheres (EZ) &e.,
cannot have the same mean values which they have in the
system of material points.

78. It might be suggested that the explanation of the
difficulty consists in the fact that when the molecules have
finite diameters the quantity of momentum transferred across
any plane per unit of area and time is increased in a certain
ratio, 1 :1 + 4«, where, in the case of elastic spheres, x = §mwcip.
But this increases both terms in (A) in the same ratio, and

therefore, so far as this property is concerned, %—J{l remains

zero. This effect arises from the usual convention concerning
elastic bodies, according to which there is on every collision
an instantaneous transfer of momentum through a certain space.
It has nothing to do with the change of direction of the relative
velocity, which also occurs on collision, and which we now have
considered. The first effect would take place in precisely the
same way, if after every collision the direction of the relative
velocity were restored by Maxwell’s corps of demons to what it
was before collision.

P ARG
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CHAPTER VI

CORRELATION OF VELOCITIES. ELASTIC SPHERES.

79. THE solution of the problem of the last chapter is
this. In the system of spheres of finite diameter £ has become

E+F, and (df %) has become (gf+ %>“+ (%llil + ZZ)

That gives by arranging the terms in (D)
o= [ ot {am gy (55 35) - i+ )

+3moog| (s ) +(‘;’£'+-a%)] i (v}

We may assume that oy o (Zﬁ+§£) is not altered by the

substitution of £+ & for , or ay j ; (%f_ + lefa) =0,

The first two terms of this equation are togother zero
by (A) Art. 65. The remaining two terms can be made zero by
suitably choosing the ratio of the means

(E+ ) ()

We have, namely, writing « for §mctp,
dE dt df dt
K{(dz dw) * (dz + dw)}
whence

(Y - (B By (B ZY o),

if &2, x® &e. are negligible.
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80. Instead of using M, = f f f dzdydzory @lf gﬁ) or

the analogous terms M,, or M,,, we may make use of

M= f f fdxdydzazg—g,

or the analogous terms My, or M,, and we obtain the same
result. I have set out the mathematical work in the Appendix
by reference to Arts. 66, 68. We may therefore now use the
complete expression for M, namely

M=fffdwdydz{a’%+ﬁ“% -.1-72%

+a8 (3 + ) +on (4 )

cl'n d¢ }
+ By (2 dy) ........... e (30),
oM .
and we then reduce e to zero by making

dE\:_ x  (dE\* (dE x (dE
(dx) - (dx) ’ (dg/) 1——x<dy) ke
Now so long as the distribution of velocities is represented
by €#?, and @ is the sum of squares of the velocities, £ &c. and

<%>z&c. must have either the same or less values than those

found by the method of Art. 63, for material points. In
stationary motion therefore in the system of finite spheres Q
cannot be the sum of squares only. It must contain products
of the form b(ad’+ BB +y'). And the question now is, what
must be the form of the coefficients b, or as I shall call them

coefficients of correlation, in order that the ratio ( i) ( di)

may have the required value.

81. By way of illustration let us suppose n molecules within
a sphere of radius R, their velocities being distributed according
to Maxwell’s law ¢7¢ where @ is the sum of squares of the
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velocities, and let us impart to each molecule, in addition to the
velocity which it has in that motion, the small velocity X' in .

This being done, the chance that one of these molecules
shall have velocity represented by lines drawn from the origin
to some point or other within an clement of volume dQ), whose
centre is distant p from the origin in dircction making the angle
Y with the axis of , is

Ae™ (1 + 2hp X’ cos ) AL
The chance that another molecule shall have velocity repre- |
sented by lines drawn from the origin to some point or other
with an clement of volume dQ distant ¢ from the origin, in
direction making the angle ¢ with p, is
Ae 1 QY {1+ 2hg X’ (cos r cos ¢+ sin yr sin ¢ cos )},
where ¢ is the angle between the plane of p and ¢ and the plane
of p and #. The chance that both molecules shall have the
velocities aforesaid is
Are 0 4O (1 + 2hp X’ cos ) {1 + 2hg X" (cosr cos ¢
+ Hin e sin ¢ sin e)}.

Multiply this by % sinyrdyr, and integrate for all values of
¢ and 4, and we obtain

, 4,
A=t @0 dQ A (I + g X"y cos qS) ,

expressing now the chance that the velocitios p and ¢, of two
molecules, in whatever direction cither is, shall make the angle
¢ with each other. Now let u, v, w be the components of p;
W, v, w' those of . Then

PP =t 0w A 0"

dQdQ) = dudvdwdw dv' dw/',

Ppq cos ¢ = wun +vv' + ww'.

Therefore, since, with these substitutions, the expression docs
not contain ¢, it gives the chance that two moleculos, both
within the R sphere, shall respectively have velocibics w...u-+du,
&e., in the form
A_ne-—h('w“-i-v’+w‘3+u’ﬂ+v'n.|_w'2) du . ..Cl'll), {1 + 4:511 X/g (uut + ’U'I/ + w,wr)}_ ,

B. 6
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that is, assuming X", &e., to be small,
A du ... dw',

B in which

Q@ =u+ P +w+u?+ 0+ w? — %?X’“(uu’+w’+ ww').

b; Evidently, if we take ¥” and Z’ into account, we shall have to
substitute X’ 4+ ¥+ Z" for X" in the last expression.

We sce then that in the case now treated the coefficient of
correlation b has the form

e P R 2}

3

or, since Xo+ Vi 20=_".,
2nh

X, Y Z denbting the veloeities of the centre of inertia of the n
molecules,

b= 7% (X4 Y4 29X Vi 4 Z3) ......(31).

82. Next let us employ the converse method, namely, the i
coefficients b being supposed given, to find the ratio £7%: g2 i
And first let us consider a finite number of molecules, and all
the b coefficients equal, and very small, so that 0%, 1%, &c., may
be neglected.

We have generally, referring to the determinant of Art. 63,

PR

g = 2—17}2) , and therefore
Bt FizFiof t

_ Dy i

=8+ 1

0E* being the variation of £ due to the introduction of the b
coefficients. Now it is proved in the Appendix (n) that in this
case 0D =0. Therefore
Fha_. -Dn - aDn
$=2%0= 2D -

%
H
&
3




VI.] CORRELATION OF VELOCITIES. KLASTIC SPHERES. 83

Also Dy = LH £, FiSor ST
SiSu URfid koo
SiSws JSafar L+ /3.
and (sce Art. 83) (1 + /) =—10f, (1 +f#) = - bf,, &,
o fi=4 (0= bfi = bf), &e.
If we were now to make evory f=1, wo find that cvery
constituent in Dy, as it originally stood is in the varied form of

D, multiplied by 2;b Hence

oD, =— D, ( 1— (%gf)"ﬁ) =-n"; L,

But on the same assunption that every f=1,
-Du = ...,Zl,‘,
20D 2nh’

A on=1,

2nh 2 7

3 n-—1
N /9 4 Yom e
whence Erna O 4h

And  E'=0D,/2hD) = -

b

3
==’
n being large, or
b= (g bt 1,
as we obtained in a different way in Art. 81.

83. Next, let us assume b, the coefficient of corvelntion
between the velocities of two molecules, to bo a function of the
distance 7 between the moleeules to which it rolates.  And lot
it be required to find, on this hypothesis, the ratio

F5. B or (‘2’5 : (jﬁi)

For the system of finite spheres we shall have

A 4
Q= X0 + 23, 2,0,
(i
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where b,, is the value of b for the two molecules whose velocities
are ayp, a,, &c., whence, substituting for «, as in Art. 63,
Q=1 +12=buf) o® + (1 +/2 = b f3) . + &c.

—2a,E(1 — 301 3f) — &c.

+2(fifo + 3D —$bin fo — 1}bqnf,) o0+ &e. ...(32).

Then g4 2= Dl;ngﬂ =g+ 53¢ 7 / 2hD,
1
or E2=73) Dy / 2hD, Z

every b being small, so that its square and higher powers may
be neglected, and, for the same reason, the variation of D may
be neglected, as will be easily found. Appendlx (n).

Now in this case [see Appendix (0)]

olDu
b — 322

in which p and ¢ respecmvely take all values from 1 to =, there
being n molecules in the system. Also if we. assume the
molecules to be scattered through space without regard to the
position of p, with density p, ZZby, /5 fy may be represented by
the integral

2fp f: 4rpdrby, /o

and if by, is very small except for very small values of r,, (see
Appendix (p)), we find

sf, f 4mr by fodr =372 [ dmropbydr .....(33),
—Sf25b, if Sb= f amr*pbdr,

and therefore £ =0f
= — }3£75b/2hD = —33b. F,
because 2f,2= D,,; and if b be so chosen that $3b=—«,

2T, = R (34).

84. Again, it can be shown that under the same conditions

(dé’z) _ ,c df) ..................... (85),

and this is the required ratio.

i en
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For since E=oy f—i— 0ty 3 f+ &e.,
¢ d f d fi
de = M de XF -+ \f+&(

=z 0 6’,+a,9. + ... +an91h

. l D e
_ 1 dE 0, 0, i
whence a, = 0, ds a, 9, a, 0.~ &e.,
and R=a’+a’+..+a’
— dE 0”11_1 'J
A (dz) <'+e>°‘ ot (14 0,‘)
26, df '
— “a i d &c
2616‘,

0, oy, + &oc.
Now the determinant of this exprossion differs from that of
Axt. 63 only in the form of tho coofficionts. Thoreforo

(?ié) Dy S
dz D= 2/1

Again, when the b coofficionts are introduced, we have,
substituting for a, in by, 00, &c »

Q= 0 ’<d{=> + (1 + 0 s —Din z;) a’+ &e.

6.6, 9, . o
-+ ( 0 q ‘+‘ bu bl?l. 0 b,m 0 )ala, &(,’

and by the same process as before
(8 -0 (&) -y 30 (4
dz de ZhD 2/:, dz
It follows from the above that any form of b which makes

$3b=—x, or § f 4arrpbdr = — &,

et
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and satisfies the equation (33), gives a solution of

/df/ 2— dE 2

@) =~(z)-
and the solution is independent of the form of the function 5
so long as that function satisfies the conditions of Art. 61.

The value of %b is thus determinate. But the particular
form of b which will make } / 4mrpbdr = — k is not determi-

nate. For instance, let

_ k-8

- 3 e’
That is a solution of (33) and (35) for all values of u greater
than 3.

_— 3
Again,let b=-— p—3 9—3 when r < a,
o

That also is a solution for all values of w greater than 3.
Here « may be the radius of a sphere which on average contains
one molecule, as in Art. 61.

85. The law of distribution of velocities being €9, where
Q= o o? + bpoya, + a0° + &c.,
let a, B, v be the velocities of a molecule of mass m, o, B, o’

those of any other molecule. Then, b being small, it is easy
%0 prove that

mEb(aa +BB +yy)=—-3 7
— — T3,
=2«T,

that is, $m3 (aa’ + BB’ +9y’) is equal to the Virial (taken as
positive) of the intermolecular forces, represented in case of
elastic spheres by collisions. In Art. 58, dealing with finite
intermolecular forces, we advanced a step further, proving name-

ly that the value of }m (ax’ + BB’ + ') for any given r is equal
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to a particular part of the Vivial specially related to that value
of . If we are to make a similar step in advance in the case of
elastic spheres, it must be by dividing the Virial, if that bo
possible, into distinct portions, cach spocially related to a
particular 7. Instead of the Virial of the definite force which
m’ exorts on m at digtance r, let us caleulate the chance that
m/, so situated, shall be the next sphere to collide with m,
multiplied by the mean Virial of that collision if it occurs.
That gives us a part of the whole Virial which stands in
special relation to 7.

Consider a molecule m. The number of collisions between
m and m’ with rclative velocity V in time di is proportional to
wcip Vdt. Suppose the whole systom to have attributed to it a
velocity equal and opposite to that of m for the time being, so
as to reduce m to rest. Then the sphere m” which collides with
m with relative velocity V must have deseribed a certain free
path, which must have commenced at some distance » ... r+ dr
from m.

The chance that it shall have commenced at distanco
r..r+dr is of the form ge=®dr, where ¢ is independent
of r, but a function of V. But ' starting from collision at
distance 7 from m, is as likely to be moving in any direction as
in any other; wo must therofore divide e~¢" by 472 Again,

the Virial of the collision if it takes place is gm ‘;0 by Art. 28.

Let us then introducing the factor q:"” agsume for given V'

_m*V e 2 Ve

0= s 3™ G
and therefore, given V,
00 4 o0
33b = f , 4rripbdr = gqrc‘p ﬂf{ . ;l; 4" dy
3 4’

and taking means for all values of V
320 = —§wc*ol = — kT
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88 KINETIC THEORY OF GASES. [cEAP. VI.

To express b as a function of », we must perform the
integration according to V, and not according to . That is

" e
- Jung f Ce™ 1" mVe e dy,

in which ¢ is a function of V, and C is the usual constant.

That appears to satisfy all necessary conditions for b. But
it is not a complete solution of the problem, because the intro-

is not proved to be necessary, except

duction of the factor iﬂ
q'r

to satisfy (33). It is possible that, as in Art. 57, the corre-
lation, that is, b, may depend on the angles which the velocities
of two molecules make with r, the line joining their positions,
as well as on .
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CHAPTER VIL

FINITE INTERMOLECULAR FORCES. BINARY ENCOUNTERS.

86. It is worth while to apply the method of Chapter V. to
molecules between which finite forces act. Nothing is assumed
concerning the force acting between two molecules, except (1)
that it acts in the line joining their centres, (2) is a continuous
function of the distance between their centres, (3) becomes
repulsive and infinite as that distance is indefinitely diminished,
(4) is evanescent at all distances greater than a certain line
¢ which is very small compared with the dimensions of the
space in which the system of molecules is moving. A sphere of
radius ¢ described about a molecule shall be called its sphere of
action.

It seems necessary to assume (3) that for sufficiently small
distances the force becomes repulsive and infinite, if we are to
hold that there is a very small distance within which two
molecules cannot approach each other.

87. With this definition of a molecule, let us assume that
the number of molecules scattered through a given space is so
small, or the aggregate volume of their spheres of action bears
so small a ratio to the space, that no molecule is ever within
the sphere of action of more than one other molecule at the
same instant. In other words, the encounters are binary. Or
that the number of such complex encounters which take place
in unit of volume and time bears so small a ratio to the
number of binary encounters, that we may without appreciable
error assume all the encounters to be binary.
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88. Suppose first a molecule 2 fixed in space. Lot PX
bo any line through £,

Lot @ be a point just outside of the sphore of action of P
and distant £ from PX. And let another particle at @ of mass
m move with velocity ¢ parallel to XP 0 An encountor takes

A

place, and sinee the cncounters are assumod to be binary,
m deseribes a symmetrical curved  path QRQ', I being the
apse. Let the angle XPR =+ The whole coffect of the
encounter, 8o far as regards the change of direction of the
motion of m, is the same as if e reeeived an impulso 2mg cos §
in direction PR, Then also L2 expericnces an impulse 2mgeosyr
in direction RL.

Lot the number per unit of volume of moleculos which ab
or near () have veloeity ¢ ... ¢ +dy in direction X be f(q) dy.
Then tho sum of the impulses which 22 exporiences in unit of
time from all the molecules which so movoe is 2mf () ¢*dg cos
and the mean force por unit of time on I” due to all molecules
moving from @ in dircetion X2 i

2m f J(@) ¢* cos Y dy,

¥ being a function of g,and the integration including all values
of ¢. If [ also varies ¥ iy a function of ¢ and /.

Now suppose a circle deseribed about X with radius ! in a
plane at right angles to XP. Let m, moving parallel to XP,
be before encounter anywhere on that circle, and let tho angle
made by the plane QX P with the planc of the paper bee. R

will evidently lie on a circle parallel to the circle described
about X.
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If PZ be drawn at right angles to PX in the plane of the
paper, the mean force on P resolved in direction PZ due to the
molecules moving from @ in direction parallel to XP is

2m cos e‘[f(q) ¢* cos Jr sin \rdg.

And if now [ also vary, the mean force on P in direction PZ
due to all molecules moving in direction X P, whatever the
value of [, is

2m f "cos ede f 2mrldl f F(9) ¢° cosyr sin 4rdyg,
0 0

4 being now a function of [ and ¢. It is of course zero.

89. If P, instead of being at rest, be moving with velocity
% in direction PX, we must write u+¢ for ¢ in the above
expressions. The force on P for any given value of e will
then be in direction RP, and equal to

om [ 2rldl f dq f(q) (g + w)* cos ¥
0
And the mean force on P in direction PZ will be
2m f "cos ede f 2mldl f S (@) (g + w)? cos ¥ sin yrdyg.
0 0

Now let the plane of the paper be the plane of XZ, X P the
direction of #. Let the function £ have at P the value &,, and

at any point whose z ordinate is 9z the value & +%ll-§az. Then
the velocity of P relative to @ will be ¢ +u +§—§ lcose.
And the mean force on P in direction PZ is now

47rmf:cos ede -/o ldlquf(q) (q +u+l % cos e>2 cos Y sin .

That is, if w, v, w be the component velocities of P, |

dw g - dE 2 .
= 47rmf0cos edefuldlquf(q) (q +u+ ldz cos e) cosyrsinr

=—-4s7rmf:ldlquf(q) (g +u) l-j—fcos«[rsin«[r.
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And u being negative let us write —u for w. Then

u%z=+4.«7rmf ldlquf(q)(qu+u’)l-—§cos\]rsmmlf
= 4 dorm folﬂdlfclgf(q) u? cos Y sin yr Jg’

on average of all values of « ; or writing 2lh for neus :

gl_uj df 1
“GE T Ao

where K =4 / Bdl f dq f(¢) cos Y sin .
0

du .
By symmetry w at has the same value mutatis mutandss,

and therefore %’7’/‘7’ =K @f (Cg)
dE dr od - _ (lf dé’ 2
. B+ %) duiimr (B 2V (36).

90. This agrees in form with the result obtained for
clastic spheres in Art. 76. But «, instead of being a known
constant, now depends on the unknown law of force and is a

function of ¢*. Further, in the expression for «, cos«[r is

necessarily positive, because 4 lies between zero and = 30 and

also cosyrsinr is necessarily positive, and « is necessarily
oy . mw - e e . .
positive. Now if ¢ > 3 cos r sin 4 diminishes as » increases ;

that is as ¢ increases, because % is positive ; if Yr < ;—:, cosr

sin + increases as ¢ increases.

Also the condition that yr shall be less than '—Z is that [ be

less than a certain magnitude, which we may call /,, and the

greater ¢ is the smaller must 7, be. It follows that as ¢?, or ]
the mean kinetic energy, increases, it becomes less probable I

that yr shall be less than % , and therefore more probable that

cos yr sin yr shall diminish as g increases. I

| S
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Therefore if ¢* be great cnough, cos ¢ sin Y taken on average
of all values of ! and ¢, will ultimately diminish as ¢* increases.
And therefore « must for sufficicntly high valuos of ¢*, that is
of the mean kinctic cnergy, or temperature, if the two are
identical, either diminish as the temperature inercases, or in-
crease less rapidly than the temperature.

91. We have now to consider the other torm in (}AZ,
namely,
d/dg  dt
Y di (%*da‘a)'

Let us again assume the encounters to be binary. As in
Art. 68 describe a sphere of radius ¢ about any point O, and let
PP’ be a double ordinate parallel to z, 2> and I being on the
surface of the sphere.

i »
Thon Y- [[ awdy - £ =75

Suppose two molecules to encounter one another, the point
of contact of their sphores of action being at the centre of the
sphere. Let V,, Vy, V, be the components of their relative
veloeity before encounter. We may suppose their common centre
of inertia at rest, since its motion will not affect £ on average.

Let us consider the change of gf due to this encounter

f f dady (dgt’ - d‘i”) - 4*7;;&“ ‘

First to find (%:;, let f be referred to P as centre, and lot

Jo denote its valuc at the centre of inertia of the two spheres of
action. Let f be the value of f at the centre of cither sphore
when the encounter begins.  After the encounter has ceased f
will have become f”, corresponding to the final relative position
of the two spheres of action. Let V., V, have become V/, V.

only, that is

%,
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If 9€, be the change in £ due to the encounter, 0, is

£

omitting the factor . which is on average constant, propor-

f

tional to, and has the same sign as

Vif' = Vaof,
that is, if we write Vy=\V, V) =NV, &, the same sign as
VY

Now let 6 be the angle betweon the relative velocity, whose
direction cosines are A, w, v, and the line of centres at the
commencement of encounter.

Then 24— 6 is the corresponding angle at the end of the
encounter, ¥ being the angle so denoted in Art. 88,

Then we have, = bemg the radiug of the sphere of actmn
FFit (= weos 04T =inin fcon ) ¥

S'=rf+ (-2: (= v cos 29 — O+ V| — v in 2y — 0 con P) ;g,
also as shown in Art. 72,

[ =— N cos 2y — ;/1},” -~ 8in 24 cos ¢,
-t

and therefore, omitting cos ¢ and writing 4o for cos?¢ as the
result of integrating according to ¢,

Nf =N+ ; Av . (c08 29 08 2 — @ — § sin 24 sin 29 — 6) %{

gf{coqﬁ(éom‘wp dcos®r+1)

— ¢o8 6 2 cos? Y sin? Y

_.7\,‘/:,+ SV

+ sin @ 2 sin 4 cos Y (2 cos? Y — 1)
+8in @ sin yr cos Y (2 cos?r — 1)},

e g 3
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Ao M= M,
c . - ar
+Ng (—veos 6+ V1 — 2% sin 6 cos ) i

=No—Avg cosﬁdf,

on average. Also for the pair of spheres (A —\) fy =0, and
b
f 2 cos 0 sin 0d8 (V' — Af)

=X —-—f 2 cos?d sin 6 d (6 cos* 4 — 6 cos? Y + 2)

+ M\ ——-f 2s1n°00030d03qm«[rcos«[r(Zcos"«Jr 1)...(36),

which can be casily shown to be posmvc 0 bemg less than b,

a.nd v less than 7. Therefore ay — 7 (df > i positive.

t iz

92. If instead of being repulsive as hitherto assumed, the
force between the molecules 22 and m be attractive, it is possible
that the approach of the two may result in a permancnt union,
each molecule revolving in a closed curve round the common
centre of inertia. Leaving this casc out of consideration, the
form of the path described by m with reference to I regarded
as fixed will for attractive force be as in this figure.

The angle r is now between g and = instead of between

zero and %T as in the case of the repulsive force. The impulse

on m is represented as before by 2mq cos, cosy» being now
negative. The mecan force on P due to a succession of en-
counters is in direction PR instead of RP. The reasoning of
Art. 89 will apply equally well to this case, except that in the
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result uo(l;;) will be of the opposite sign to jﬁf instoad of the

. dE  dE\ d
same sign, and ((t..z +d;,;>

g

a1 will be negative,

That leads in stationary motion to a positive sign for the
cocfficients . It is conceivable that the force between two
molecules, being a function of the distance » between them,
may change sign at some value of 7. If however thore be a
limit of distance within which the centres of inertia of two
molecules cannot approach cach other, the force must ulti-
mately, as r is indefinitely diminished, become repulsive.  And
as the density increases the ncar approaches becoming more
frequent, the repulsive forces must ultimately predominate.
The effect of the atbractive forees, if such oxist, will be, not to
make the Vs positive, but to make them have less negative
value than they otherwise would have.

93. So far we have assumed the encounters to be binary,
so that for cach encountor cither molecule deseribes a complete
symmetrical orbit with referenee to the other, complete that is
in the sense that after the two have separated to the very small
distance ¢ from each other, the motion of cither is sensibly
rectilinear in the asymptote. If wo remove the restriction to
binary cncounters, we may reagson as follows,

Assume dé

dz
at P moving with « negative has greater velocity rolative to
molecules on the side of positive 2 than to those on the side of
negative z. On the average therefore the potential of the
mutual action of I and the other molecules will be greater
with 2z positive than with # negative. Lot p be that potential,

to be positive at tho origin 2. Then a molecule

I ce
Then PR positive.

Therefore if u, v, w be the component velocities of I,

dw dp . . dw
o= — - 18 om average negative.  And therefore w 18 on
dt = " dz g0 neg dt
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3

é,verage positive, or has the same sign with ErE Also its sign
has no relation to dg .
dz
du a¢
Similarly w T is on average of the same sign as 7o’ and

independent of the sign of E . And therefore

df df\ d— (dE df du
Gz a==(z +dw)( &)
is necessarily positive.

And therefore in a system of molecules of the kind now
considered %-tﬂ{ is positive, and the motion not stationary if

£, 72, £? of Art. 61 have the same mean values as they would
have in the medium of material points. To effect stationary
motion, £, 7%, &% must be increased as we found to be the case
with elastic spheres.




CHAPTER VIII.

GENERAL THEORY OF THE STATIONARY MOTION.

94. HAvING established the results contained in Chapters
1v. and v., I shall now assume for the law of distribution of the
coordinates and velocities among an infinite number of mole-
cules in stationary motion the following, namely: The chance

that at any instant the coordinates of the molecules, 2 in

number, shall lie respectively between the limits
z, and 2+ d=z,,
Yo Wt d?/::
2, z+dzn,

.....................

z, and =z, + dz,,
Yn » Ynt+AYn,
Zn s Zn+dzy,
and their component velocities between the limits
@ and a, +da,,
B 5 Bitdp,
7 o» nmtdy,

.....................

ol ¥

is (-) VDA™ da, ... dzpdas ... dy.

Wi
o
%

1
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Here Q = a, (alﬁ + 612 + ')’12) + Qg (aa2 + /922 + 'Yaz) + &c-
+ by, (o0, + BB, + 'Yl')’z) + &e.

The ‘a’ coefficients are independent of the positions of the
molecules. Every b, as b, is a function of the distance, 7,,, at
the instant in question between the molecules to whose
velocities the suffixes pq relate, such functions satisfying the
conditions of Chap. v. D is the determinant of the coefficients
in Q

Again, A may be explicitly a function of the coordinates

x, y, z, &c., or may be a constant, VD is a function of the
coordinates, only as contained in the coefficients b. Then

evidently .
(?r)a"/ﬁ _Uf...e"‘Q doy ... dy,=1.

Instead of using the word chance, we may say that the
above expression represents the time during which on the
average of any very long time the coordinates and component
velocities will be found respectively within the limits aforesaid.

95. The function ¢ may conveniently be put in the form
Q =ama’+ ‘;‘blzaﬂﬁ + ';T bisay s + &e.

+ 000" + FDnoacty + § bagtatty + &c.
+ &e.,

in which each line is appropriated to a particular molecule.

96. According to the results obtained in Chapters Iv.
—VI. it is necessary for stationary motion that E2+ 724 2
(Art. 79) shall have a certain value. That necessary value it
will have if suitable values be given to the coefficients b as
functions of 7. The coefficients b being so determined, the
motion is stationary, so far as not to be disturbed by the
collisions or mutual forces of the molecules. I assume now

that in Q the b coefficients have the values so determined.
)
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97. We can now deduce the fundamental property of this
distribution, namely, that for any given set of positions of the
molecules, or as we shall call it, for any given configuration,

aQ _
a, o, = o, do, = &c., on average.
dQ
For da = 20,0 + byya, + bys0; + &c.
1

If, with &, constant, a,, a; &c., assume all possible values
consistent with the conservation of energy, we find (see
Appendix (h)) that the mean value of

aQ

d_al ) or 2a1a1 + bmae + &C.,

is ED— o;, D being the determinant of the coefficients a, b, &ec.
11

in @, and Dy, its coaxial minor obtained by striking out the row
and column containing @,. Therefore also

@ _D ,
% e =D, % On average
But it is also shown (Appendix (g)) that
=18,
whence on average
Q _D Dy_1
‘de, Dy hD R
.. dQ 1
Similarly b 3 &e.
d aQ _
and a, d—a-l = 0y aaz =&C ittt L

98. Inasmuch as the system is infinite, and there is no direct
action between any molecule and any other molecule except at
distances very small compared with the dimensions of the
system, not only is the sum of the potential and kinetic
energies constant, but the kinetic energy of the whole system
is itself separately constant. Let the kinetic energy be

T= 3my (a2 + By + 72+ Em, (2 + B2 + v7.") + &c.
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Here if a, be velocity of translation m is mass, if a be
velocity of rotation m denotes moment of inertia, and so on.
Then wo have by tho constancy of 7,

My ‘i 5 (i ; F+& =0 cviirininnns II.

For the same reason @ is soparately constant, or

dQ day . dQ day

c"[&;"a*z--l-d dt—}-&c— .................. III
Now II and IIIL suggost the inference
dQ aQ / =

dal/ "”1“1—3'&; myay = &c. .... TSRS IV.

An obvious solution of this is @ = §3m (a® + B* +*). But,
as proved in Chapters 1v. and v., this does not give stationary
motion when the molecules have finite dimensions, cxcept in
the limiting casc of infinite rarity.

99. Concerning the Mazwell-Boltzmann Law
myo® = mya,? = &c. -
This follows at once from Art. 97, and IV., if IV. bo acceptod.
It must however be noted that IV., although a consistent, is not

a nocessary, consequence of IL and ILL For while a,, a,, &c. are

unchanged, let all the molecules undergo small displacemoents.
Clat1

da . .
Then R d; &e., deponding as thoy do on the intermolecular
forces, will receive variations, which may be arbitrary, as the
displacements arc arbitrary. If under these circumstancos

"?? , &ec. remained unchanged, IV. would be & nccessary conse-
1

quence of IL and III. But JQ &c. do not remain unchanged.
%

So IV. is not proved by II. and ITL

If we assume condition A, we assume in effect that the
b cocfficients arc all zero, and @ = 3ma® It follows then ab
once from the law of distribution ¢ that mya = ma,* = &c.
The law ig therefore true whenever condition A can legitimately

be assumed. It is true, that is, in the limiting case of infinite
rarity.

SRR
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I am not aware that it has ever been proved in any other
case, or by any assumption not equivalent to condition A.

If it were true in the general case, we should have, comparing
II. with IIIL, '
aQ / _de _

Ja—l may, = E mqa, = &c.,

and therefore by Art. 97,

- D D
Dy~ mDy
or my Dy, =meDyp = &c.

But Dy, D, &c. are functions, not only of the masses of the
molecules m, m,, &c., but (if they be elastic spheres) also of
their diameters, (if they be centres of force) of their effective
volumes. It seems therefore to follow that the law

myo? = mga,?, &e.

cannot hold universally. It can be accepted only on the
authority of the great physicists by whose name it is known.

100. If therefore we write

aQ _
&—a;/ml = %,

d
d‘%/ms =/‘2a2) &O.,

fn, M, &c. will in general have different values for different
kinds of molecules in our system. Only in the case where the

molecules are all of the same kind, may we write %g / m = pa,

where u is constant.

In all cases however in which the b coefficients are very
small p,, p,, &c. will be very approximately equal to each other.
For in the limiting case when the b’s are all zero

Q = ma® + aa? + &e.,
and we know that a, =m,, a,=m,, &. When the b’s are not
zero, every coaxial minor, as Dy, consists of the product of all
the axial constituents m,m, ..., and of other terms each of which
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contains the product of not less than two b's. The quantities
myo®, mea?, &c. will therefore, as long as the b’s are small, differ
from each other only by small quantities of the second order.

Field of external force.
101 We may now equate to zero the time differential of
AND De""Q and so obtain, applying Boltzmann’s general method,

ded dyd dezd 10
2(Effi_5+dtdy dtdz)A,\/’De

dad dBd  dyd Frmh@
+z(dtdu dt dB"'EltEq) 4/ Deta=0.
de _  dy de _
But —Jt-—a, %—-B, %—'y.
Again let the forces acting on the system have a potential x.
Then
day dy
Ydt T day’
do, o_l&
dt =" da &

And the equation becomes, arranging tho terms,

«/1)“2( d4 _hd dy dQ) «/'j)‘z(ﬁd“i deg@)

de m dw da dy m dydp
dd_ hAdydQ
+VDE< de rh.zza:y)
dD db
2v522a dbdm+&'
4 /' db
—AhN/DEE(aa+/8,B+'yry)( dw+,3dJ &;>=o.

Let us first consider the terms which involve differentiation
of the b’s. Since every b is a function of the corresponding
r, and of that alone,

db _dbdr dbao—of &
de = drda_dr »r OO0

where r=@—-oP+Y—yP+E—2)0"
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DA _ o ap b dr
db dz db dr dz
dD dby, 2, —x, dD db,, z, — =,

dbgdry 1, b, drig 7y

d.D dblg x1 - .’L',

33

Therefore 33a

+ &e.

T B dre T
dri,  dry
because . 9z, = da, &c.

The above expression can by taking the terms in pairs be
resolved into a series of terms of the form

dD db (a—o) (2 — &)
db dr r ?

and 1s therefore zero on average.

Similarly
/ , n (. db db db
33 (a +88 + ) (a BT+ )

can be resolved into a series of terms of the form

(ol + B8 + o) R (2= ) (2= )

and is therefore also zero on average.

102. We have then
VD3, (atdii _hd dx dQ)

dz  m dz da
+&e. =0,
or dividing by 4,
(g d 1 dy dQ) (wlogd _ 1 dx dQ) +&c.= 0.

1 da, m, de, da, da, ms, A, doi,

And taking mean values of le_g from Art. 97,

dlogd ., dy D dlogd ,dy D
al( da, h%ﬂman>+a2( dz, _hc—l-;;szn

>+&c.=0.
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D D
gDy gDy

dlog 4 dy dlogd , dy _
o ( Cdo T h leii"‘b) +a,( A, hdw,,'“') + &e. = 0.

And sinco = &¢. = p,

This is satisfied by assuming, if the molecules be all of
the same kind,

We have then for the law of distribution of coordinates and
velocities in a field of oxternal forco whose potential is

(-}f) v:ﬁ e-‘h"'x e.—hQ dwl v dz'ndal' . 'd'Yn ...... (38).
e ) 1
Now My0ly?® = hl’ L e
.. _ 3n
and wl'=j3m (@ + B ) =g

the system consisting of n molecules of the same kind.

But Q = wo? + by o0, + &c.
_ Dy + by Dy + Dy + &,
hD
_3n
2h"
Thercfore Q=T ooeevvinanaiennnnnnn. (39).

103. With regard to the inclusion of the intermolecular
forces under the potential x the same considerations apply as

in Chap. 1. I shall assume that wo may use the form
e x+)

As an cxample let us now again consider the systom of
oqual elastic spheres in vertical column, Arts. 29 and 45. In
that case y is the potential of the constant vertical force. Lot

- us suppose «, and therofore all the b coefficients, very small.  If

the « velocity of any molecule, as u,, be given, the mean value
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D,

of u,is — 7 s where D is the determinant

2 bm bm-. .
= brz 2 b23 eeen

11

.....................

for in this case the a coefficients may each be replaced by unity.

Now D,, contains the term —b,, multiplied by axial coefficients
only, and other terms each of which contains the product of at
least two b’s. Therefore if each b be small enough, the mean
value of u, is ultimately — 4 by,u,.

Similarly Uy =— 3byu,, &c.,
dQ .
and therefore du = pnt = (2 —-330¥) u,,
or myp=(2 — 1 2b%.

It thus appears that e~ differs from e=**, when & is small,
only by small quantities of the second order. Now the factor
e, or e, in the expression for the density in Art. 29
corresponds, not to e*x, but to e*. That is, if ) be the
potential of the intermolecular forces, e is what e or ¢~h¥
becomes in the limit when the forces become infinite for the
distance r=c.

And « being small the solution agrees with that of Art. 29.
It does not however agree with that of Art. 29 when &%, &c.
cannot be neglected. Which result then are we to accept
in this case? Evidently the result e ¥, because Art. 29 is
based on the tactt assumption of condition A, and therefore
holds only for small values of x. To sum up the discussions of
this problem.

If « be neglected, the law of density is e=2x, with 7' = 4'1

. h
If &*, &c., but not «, be neglected, the law is e~*x ¢, with
=3
=

If «2 &c., are not to be neglected, the law is e~*#xe, with

n_ 3
f—m.

,
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Boltzmann’s Minimum function.

104. The following theorem is not to be compared in
elegance with the theorem founded on condition A, Art. 38,
but has the advantage that condition A is not assumed.

Let f(u... up, ... 2,), or £, be any positive function of the
coordinates #,...2,, and velocities 1w ...u,, of a system of
molecules, and of certain parameters a, b, &c. Let 9f be a
small variation of f, a, b, &c., being constant. Let us write

f+f =fl+g ordf=gf.

Let the variation 9f; or ¢f; be made subject to the following
conditions, viz.

H...fiquml... dendts ... dun

=ff..fdw1... dzpdu, ... diy,

or writing dsdo for the continued product of differentials,

Also j f . /T ¥ gCdsdo = f f ... fCdsda,

or f f oo fqCdsdo =0 .....ccovevennnnn... (2),

where C is any function the constancy of which is prescribed.

Again, let
H.—_ff...f(logf— 1) dsdo,

H+aH=ff...f‘1T§ {log (F1+¢) — 1} dsdo.

§
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108 KINETIC THEORY OF GASES. [cHAP.
We have then
H+ aH=/f...f(1ogf— 1) dsdo

+f/...f]og 1+gdsdo
+ff...fqlogfdsda-

+ff...fglog 1+ g¢dsdo

-ff...fgdsda

=H+[/...f-‘§dsda

+ff...f(g?—g§3) dsdo
+f/...fglogfdsola
=H4 g;f[...fgwsda

+ f f ...fq log fdsde,
because ¢° is to be neglected.

In order that 9H may be necessarily positive, or H may be
least possible, subject to (1) and (2), it is necessary, and it

is sufficient that f f Jq log fdsdo = 0, that is by (2) that log £
shall be a function of C, that is that JS=Ae" where

ff...fodsd'a

N

We may write (—:%)2 A«D for A and Q for C. The actual

value of H when minimum is

is constant.

h 1 3n
glog;r+logA +glogD-Fo . (40).

o
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Physical effect of the b coefficients.

106. From the law of distribution at which we have now
arrived we can find the mean value of any of the products of

the form aa’, &e.  For instance, a,a,=Dy/hD, D being the
determinant of the coefficients. And all the ’s being nogative,
D, is nocessarily positive. If we have only two variables 2
and y, and if
Q= aa® + bxy + ¢y,
b being negative, we find Dy =— b, which is positive.
So with three variables, «, ¥, z, and
Q = 0@ + ayy + ay2*
+ biwy + bigwz + buys,
we ﬁnd ‘Dlﬂ = - 2alnbm -+ bmb”,
which, every b boing negative, is positive. (See Appendix (D)
as to the sign of these minors.)
The conclusion to be drawn from this is that if two mole-
cules are so noear cach other that b is not nogligiblo, they arce

on average moving in the samo dircction. There is at every
point on average a dotorminate cnorgy of stream motion. It

follows further from this uniformity of diroction that if a8, ary,
By, be the mean values of those functions for all molecules

within any small finite space, (aB), &c. have greater value
than they would have if tho molecules were material points.

Another consequence of the b coefficients.

106. But we might also, treating the velocitics as con-
stants, proceed as follows.

Let for a moment the chance that two molecules distant »
from each other shall have velocitics in @, ... w4+ du and
w ... +du' be proportional to
e~ h Wi~—buw/+w'd) d,udu',

Al

in which b may be ¢ 1%-1:, and n >3,
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It is convenient here to treat b as positive, and prefix to it
the minus sign in the index. That being the case, if b be not
negligible, that is if » be small, uu’ is more likely to be positive
than negative. If r be great, and therefore b negligible, it is
indifferent. It follows by the theory of inverse probabilities
that, it being given that ww’ is positive,  is more likely to be
small than if nothing were known of the sign of uw’. If on the
other hand it be given that wu' is negative, r is less likely to be
small.

Suppose a molecule at P with velocity %, and an element of
volume de at P, distant » from P. Let the chance that there
shall be within dw a molecule moving with velocity v’ be {rdw,
when PP, or r, is great, and b=0. Then when b= 0, the
chance becomes

. ‘I,.dwehuu’b’
which is greater or less than Y dw, according as ww’ is positive
or negative.

Further, the chance that there shall be a molecule within
de with velocity either u' or — ' is, since a priort +u’ and — o’
are equally probable, and the system is supposed infinite,

Irde (hwd 4 —huwn)
uw’ being now treated as essentially positive. That expression
is equal to Yrdew if b* and higher powers of b are neglected. But
if b% &c. be taken into account, it is greater than yrde.

107. It follows from this result that under the law of
distribution of coordinates and velocities at which we have
arrived in this chapter, if at any instant we calculated for each
of the molecules the value of 3b, or the sum of the b coefficients
connecting the u velocities of that molecule with the velocities
of each of the others, the average value of b would be
greater than it would be were all the molecules scattered
through space at random. That signifies that the molecules of
the entire system would be collected into denser and rarer
masses—the effect of which evidently is to increase the mean
value of 3b for all molecules. Further the ratio £72: £ would
have a greater value for the denser masses than for the rarer
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ones, or the stream motion would be greater for the denser
masses than for the rarer ones. So that the system would tend
more and more, with increasing number of molecules in a given
space, to assume the form of a number of denser aggregates, say
clouds, moving through a comparatively rare medium.

108. It is not cssential to my argument, but I will here
give what appears to me the best possible definition of density
at a given point at a given instant, for molecules of finite
dimensions.

I would define namely as follows. The density at any
point P at any instant is —2b, where 2b is the sum of the
b coefficients, all being negative, of all the molecules of the
system referred to the point P—that is, b for any molecule is
a function of the distance of that molecule from P.

109. It is assumed throughout this investigation that the
quadratic function @ is positive, that is, that the coefficients
a, b, are such that @ cannot be made negative, whatever values
we assign to tho velocitics. It is assumed that the distribution
of the molecules in space, and therefore the coefficients b, are
on the average such as would be calculated by the method above
indicated, the whole number of molecules of the system in a
given finite space, 1.e. p, being known. Should that condition
ever fail, the motion of the system can no longer be represented
by the law considered in this chapter. It is reasonable to
expect that the change of the mathematical formule will
coincide with a change in the physical state of the system.

.110. The condition that @ shall be necessarily positive,
whatever values be assigned to the velocities, is that the deter-
minant D, of the coefficients in @ and all its coaxial minors must
be positive. See Appendix (p). As the b coefficients increase in
absolute magnitude, D, being positive, diminishes. But as the
density p increases cwteris paritbus, the b coefficients do generally
increase in absolute magnitude, and D, with all its coaxial
minors, generally diminishes. The b coefficients are generally
also functions of the mean kinetic energy, or temperature,
as well as of the density, and if the temperature be high

%
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enough, probably diminish as that increases (Art. 90). As the
density increases, or temperature diminishes, or both, the
system may ultimately arrive at a state, in which D or some of
its coaxial minors becomes zero or negative, and then the change
of physical state ensues, whatever its true description be. Now
to any group of molecules we choose to select, and therefore to
all the molecules forming one of the denser masses or clouds
above mentioned, belongs a particular coaxial minor, that
namely obtained by striking out all the axial constituents of D
except those which belong to molecules of the group. Gener-
ally therefore the condition may be expected to fail for some of
these coaxial minors before it fails for the complete determinant
D. So that as density and temperature vary continuously, the
change of state, or liquefaction if such it be, will take place
partially and gradually, some portions of the system having
passed into the changed state, while other portions remain in
the original state. Further, the higher the temperature, at all
events after a certain point is reached, the greater the conden-
sation necessary to make D, or any coaxial minor vanish, and
therefore to produce the physical change in question.

Such is the process which our analysis leads us to expect.
Physicists may consider how far it corresponds with what is
known to take place in gases under condensation, or on what
(if any) farther hypothesis it may be made to correspond
with it.




CHAPTER IX.

OF MOLECULES AS CARRIERS.

111, THE molecules being elastic spheres, and condition A
being assumed, to find the mean free path for a sphere issuing
from collision with velocity . As the mean free path has
received more than one definition, I define it as follows. Sup-
pose a sphere m to start from a collision with velocity w, and to
undergo n successive collisions. After each collision let each of
the colliding molecules have restored to it the velocity which it
had before collision. Then our sphere will describe n paths
L, ... 1, between its collisions, each with the same velocity c.

The mean free path for velocity w is then
M=‘ Li+1+... +l,.,

n

when n becomes indefinitely great.

If 4 be the velocity before collision of a sphere m’ which
collides with m, E the angle between the directions of motion

"

of the two spheres before collision as in the figure, the relative
velocity of approach is

R=No*+*— 2wy cos K.
Let ¢ be the sum of the radii of m and m’. Let £ (y) dy be

the number of m’ spheres in unit of volume. Then the number
B. 8
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of collisions which m undergoes with the m’ spheres per unit of
time is

% f . f : S () dypme*R sin EdE = mwc2N, suppose,

and the mean free path for an m moving with velocity w, if no
‘ ®

collisions occur except with spheres of the m’ class, is A, = ey
1

If there be two classes m, and m,, and m can collide with another -

sphere of either class, we shall have a corresponding number of
collisions per unit of time between m and m,, which we will
denote by mc>N,. Then the mean free path for velocity o is

(1]
Ay = Y S ATAY and so on. To calculate the mean free path
is to calculate NV, + NV, &ec.

112. Another method of obtaining-this result is as follows.

Let S be the whole space in which our spheres are moving.
Consider a sphere m moving with velocity w, and another sphere
m, whose velocity and direction of motion are comprised re-
spectively within the limits \r... ¥ +dyr and £ ... K +dE, as
in the figure.

Now m, may be anywhere within S. If its centre be at this
instant within the cylinder whose base is a circular area of centre
m and radius ¢, the sum of the radii of m and m,, at right
angles to R, and whose height is Rdt, then, but not otherwise,
a collision will occur between m and m, within the time dt after
this instant.

The chance that such collision shall not occur is then

e Rdt

5
Now the number per unit of volume of spheres m, whose
velocity and. direction of motion are comprised within the limits
aforesaid is f(yr)dyr§sin EdE. And therefore the number
within S is Sf () dyr 4 sin EdE. Let us now assume that the
aggregate volume of all the m, spheres within § is negligible
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compared with S. Then the chance that during d m shall not
collide with any one of the class m, is
1— WG’Rdt)
(-5

raised to the power of
SF () dr % sin EdE,
that is, in the limit when df becomes infinitely small,
' 1 — wctRAtf () dyr } sin EdE,

and the chance that m shall not during dt collide with any m,,
whatever be the values of Y or %, is by the same reasoning

1 —are?dt f : f orf(‘l’ Ydyr} Rsin EdE =1 — wc*dtN, suppose.

Similarly if there be other classes of spheres, m,, my &c.,
with which m may collide, the chance that it shall undergo no
collision in the time dt is

1 — weidt (N, + N, + &c.) = 1 — wc*dtN,
if N=N,+ N, + &ec.

By the same reasoning the chance that m shall undergo no
collision in n successive intervals of time dt is

1 - 7wc*Nndt =1 — wc Nt,
if ¢ = ndt.

Also if A be the space described in time ¢
A=t or t= L
(5]

Therefore the chance that m shall survive for a distance A

without undergoing any collision is 1 — 7¢* NV g .
Let 1- wc”N% =¢dA)=¢.

Then ¢ is the proportion of the whole number of spheres m
which, starting with velocity o, traverse the space A without
collision. Also ¢ (M +dr)=¢ (\) ¢ (dN). It follows that
‘ dp  , weN . w? N
="t =k i b=—x,
8—2
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and therefore ¢ = Oc=®. Also ¢ =1if A=0. Therefore C=1
and ¢ = ¢ ¥ Whence if A be the mean value of X given o

@ (0]

'n'c"’N=7ro”(N1+N2+ )

which is the same result as we obtained above (111).

i_—.kf P = L =
, %

The expression

e f dp f "sin BAEf (¥) dy-V o' F ¥ = 2ay cos B
0 0
can be calculated numerically in terms of rc? and & if

f'\l/\ = e"hmlkw.

The fundamental equation.

113. Let G be any quality, e.g. mass, colour, charge of
electricity, momentum in given direction, &c. which a molecule
may possess in greater or less degree, and which it can carry
with it unchanged by its own free motion, and which, as
regards the aggregate possessed by two colliding molecules
is not changed by collision. Suppose a quantity of gas con-
tained in a vertical cylinder of which the height is very small
compared with the diameter of the base. Every molecule that
enters the cylinder through its upper flat surface shall enter
charged with the quantity @, on average of our supposed quality
G@. Every molecule that enters the cylinder through the base
shall enter charged on average with the quantity G,. When
the motion has become stationary, every molecule within the
cylinder at a height z above the base will be on average charged

~ with a quantity of the thing in question between &, and G,.

Let it be called G'(z). G(2) in stationary motion will be a
function of z.

114. Now consider a layer P, of molecules in the cylinder
between the planes 2z and z, +dz. If the molecules within
that layer were enclosed between two elastic planes z and
2, +dz, for a finite time, the distribution of velocities among
the molecules within it would become, under the circumstances
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supposed, completely independent of the quantity of ¢ which
they happened to carry. It would become in the strictest sense
of the term “molecular ungeordnet.”  In other words condition
A would prevail.

Collisions would occur within that layer, and any molecule
emerging from such collision would be as likely to be moving in
any one direction as in any other. The chance of its having
any particular direction would be independent of its charge G

Consequently if any such molecule, having undergone col-
lision within the layer P, arrives without further collision at
the layer P, the mecan quantity of G- which it brings with it iy
the mean quantity of G* per molecule for all the molecules
within the layer at P,. This is the fundamental assumption.

115. Now let Gz be the mcan valuc of that quantity for
all the molecules within the layer z ... z 4+ dz at .  Supposc a
molceule to arrive at that layer from above with velocity
between v and v+dv, and in direction making angle between
6 and 0+ d@ with the vertical. Let N be the distance which
on its arrival at P it has traversed since its last collision. Then
such last collision must have occurred at a height \ cos 8 above
P. Therefore the quantity of G¢ with which the molceule is
charged is the mean quantity of ¢ for the height z+ M cos9,
that is .
¢ _ da
(2+ Acos @)= Ge+N\cos 6 s’
because A cos 6 is small.
The number of molecules which, having velocity and dircetion
between those limits, pass through the horizontal plane I’ per
unit of area and time is ¥/ (v) } sin 6 cos 6dfdv.

Hence the quantity of ¢ carried through the layer £ per
unit of area and time by molecules coming from above is

. 3 40
of (v) dv f sin §.cos 0 (2) d0 + f Noos? Osin 000 7 (o) vy

= (16@+p %) 7o) v
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and taking the mean of all values of A and v it is

16E@+ s
Here A= f ’ F (v) vAdw.
0

By the same reasoning the quantity of G carried through
the layer P per unit of area and time by molecules coming

from below is $G (2) — 3 & %ll—g

And the quantity passing through P downwards exceeds
the quantity passing through P upwards per unit of area and

. - d@
time by A e

116. This is the fundamental equation from which Boltz-
mann calculates the rate of diffusion, viscosity &e. in gases as-
suming condition A to prevail. Itwould represent with complete
accuracy the initial motion of the system, if the quality G were
suddenly attributed to the molecules in the degree proper to z,
but without regard to their velocities.

It takes no account, as he points out, of any variation in the
distribution of velocities which may be caused by the quality
@ itself, for if for instance G be momentum in given direction
at right angles to the axis of our cylinder, such a change in
distribution must exist. It is assumed that the effect of this
change in distribution on the mean free path A is so small as to
be negligible, a condition which must be secured if the given
terminal conditions, e.g. G, and G, do not differ very widely
per unit of distance.

117. The method also takes no account of the stream. The
effect is to set up a stream, so to speak, of G from the upper to
the lower parts of the cylinder.  And that, as will be found,

" causes a small error in the result. The error may indeed be

negligible so long as the stream velocity is very small compared
with molecular velocities, which will be the case if the terminal
conditions do not differ widely per unit of distance.

e o e il e Pt e

e e
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It therefore does not sensibly affect the results caleulated
from Boltzmann’s formula in any case to which as I understand
he proposes to apply that formula. It is worth while however
to consider the sign and order of magnitude of this deviation
from complete accuracy.

We are asked to suppose that in stationary motion molecules
carrying positive (F, have a mean velocity u downwards; mole-
cules carrying negative (f have a mean velocity v/, u and o
being functions of 2. Hydrodynamical considerations make Gu
and G’ sensibly constant throughout the cylinder in stationary
motion.

But when collisions take place in the layer P,, condition A
is supposed to prevail so that the molecules issuing from
collision arc ag likely to be moving in any one direction as in
any other, and to carry with them, in whatever direction they
do move, the quantity of ¢ due to the height 2.

In fact molecules with positive (, having before collision
the mean velocity w downwards, will issue from collision with
some mean velocity downwards, less indeed than w but com-
parable with it, and therefore will not be moving in all directions
“indifferently, but on the average downwards. And molecules
moving downwards will possess on average a greater quantity
of @ than that due to the layer in which their last collision
took place. For let w be the absolute velocity of a molecule
m before collision. Let «» be the velocity before collision
of the other molecule m' concerned, £ the angle between
their directions as in the figure (Art. 111). Then the velocity of
m after collision is the resultant of (1) the common velocity of
m and m/, (2) their relative velocity,in whatever direction it be,
after collision. But for the relative velocity after collision all
directions are equally probable. The relative velocity therefore
contributes on average nothing to the resultant.

The resultant velocity after collision is then on average
the common velocity. And the velocity after collision re-
solved in its direction before collision is the common velo-
city resolved in direction w, that is if m =m' w + { cos E.
We have then for the mean value of the velocity after
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collision recsolved in the direction before collision the ex-
pression

A fo dnrem¥ 1]»“[0«/(»“ + Y? — 204 cos K (@ + 4 cos K) sin EdK.
0

That can be calculated as a function of w. As however we
intend to treat it as negligible, it is not worth while to calculate
it here. But we can casily prove that it is nocessarily positive.
We may therefore conclude that the mean velocity after col-
lision of a molecule carrying positive G resolved in its direction
before collision is fw on average, where fis some positive quantity
less than unity.

It follows that the mean velocity downwards of the mole-
cules carrying positive &, which before collision was u, is after
collision jfu.

We have thus proved that the molecules carrying positive
@ issue from collision in the layer P, with mean volocity fu
down the cylinder. For the same reason the molecules carrying
negative @ issue from collision with mean velocity fu, upwards.
Thorefore of the molecules which reach the layer 2, having had
their last collision in the layer I’;, the proportion which carry
positive G is not the same as the proportion of all the molecules
within the layer P, which carry positive @, as it was assumed
to be in forming the fundamental equation, but is greater.

118. The effect of the introduction of the b coefficients in
this case.

It has been shown in Chapters 1v.—v1. that molecules near to
one another are on average moving in the same dircction. The
energy of their relative motion is therefore less than it would
be were condition A assumed, and therefore their encounters

pro tanto less frequent. That tends to increase the mean free
path.

On the other hand under assumption B the molecules tend
to become aggregated into demser and rarer masses. That
tends to increase the frequency of their encounters and therc-
fore to diminish the mean free path.

w
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It is probable that for ordinary gases under ordinary con-
ditions the b cocfficients will be very small. And if so the
cffect of the b cocfficients on the phenomena of diffusion &c.
will be of the same order of magnitude as those sources of error
mentioned in Arts. 116, 117, which as we have said Boltzmann
and others have agreed to neglect in calculations concerning
these phenomena. I shall not therefore here further consider
the effect of the use of assumption B instead of A on such
calculations.
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CHAPTER X.

ON THE HYPOTHESIS THAT HEAT OR TEMPERATURE IS REPRE-
SENTED BY THE KINETIC ENERGY OF MOLECULAR MOTION.

Natanson’s Theorem.

119. M. Ladislas Natanson (Interprétation cinétique de la
fonction de dissipation—Bulletin de I’ Académie des Sciences de
Cracovie, Décembre 1893) considers a medium composed of
molecules in motion. The components of the molecular velocity
of a molecule are u, v, w, those of the apparent or stream
velocity of an element of volume are £, 5, & I have here inter-
changed Natanson’s symbols to make them agree as far as
possible with my own, and so avoid confusion. Evidently, taking
mean values,

Uu=v=w=0.

Let K=} f [ f p (8 + 72+ &) dadyds,
p denoting density, and

E=,}jffp<us+uﬂ+wﬂ)dwdydz.

The integrations are throughout all space occupied by the
gystem. '

120. M. Natanson gives no definition of £, #, § but is, as I
understand, willing to accept Boltzmann's definition—that £ at
P is the momentum in z of the centre of inertia of all the
molecules contained in a sphere of radius r described about P
as centre divided by the volume of that sphere, in the limit
when 7 becomes infinitely small.

I should propose myself to define it as in Art. 61 by the
function f; so that £ », { Natanson’s components of streamn
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velocity, agree nearly with the & 75, { of Chapter v. But
M. Natanson does not on his own assumption require any
further definition.

The normal pressures per unit of surface are

Doz =Y, Pyy=p, Pz =P
The tangential pressures are

Doy = P'E'E: sz=P"E’: Pyz=Pw-

121. He then gives the following fundamental equation,
viz. ¢ being any function of u + §, v+ 9, w+ {, the time varia-
tion of ¢ is found from

dq d, — d, —  d —
p d—% +g;(ﬁuq)+@(pvq) +PWe
_,% ., xd ydq, ,dq
-—-psz+X 3—5+ Yd77+zo7—§.
%

Here X, Y, Z are the components of external force, and 3t

the change of ¢ due to encounters, %% the total change of ¢
with the time.
Writing « + £ for ¢, he finds
d¢ . d, -, d, 6 — d,6 —
pd—f+%(pu")+ @.(puq)+;l—z(puw)=pX, &e....... (4).

And again, putting ¢=(u+ £)*+ (v+7)*+ (w + {), he obtains,
neglecting terms of the third order,

d - - —
p(%(fz+n’+§2+u"+vﬁ+w’)
d — _ -

+ Iz (2&pu? + 2mpuw + 28p uw)
d v + 2mov? 0
+ d—y(2§puv + 2npv? + 2&pvw)

+ o% (2Epuw + 2mpvw + 28 w?)
=20 (EX +9Y +£2)

) +pa_i(§z+,72+gz+uﬂ+v2+w’) ............ (5).
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i
i ..
i Combining (4) and (5) we get
z ; af —dn - dl
N -}pdt(u, +9? + wP) + pu? dx+pvad‘/ puw? da
w (l'r; d d;‘ d dE dn )
: + p'vw ( dz dj‘) + puw F) +p uv an (Lz;) d
{ ;{ =p3~t(fﬂ+n2+é”+u"+v”+w’) ........................ (6)
I d_. dn_, dt
: Lot R (lj—b’ L=
L dn df_ At dE_,  dE dn
b dz dJ =4, do T de™ =5 dt/+dw ¢
! Add to the first memboer of (6)
« % ¥ (w2 + 2 + ) z’; + 4p (u 4 0 + w?) (w+ b + ¢),
R which is zero.  Also write
K d -
i b{ dﬁp (w* + v* + w?)
i at%p (W3 + v + w?) + (Edi+1) t;./+ é‘d ) §p (U8 1+ vt 4 wh).
‘ k And then in the equation so obtained integrate for a, y, 2,
ke and make lE+my +nf=0 at the bounding surface, I, m, n i
f ? being direction cosines of the normal to that surface. Assume :
;B further that X = ¥ =Z = (0, or no external forces act. i
Vi The result is i
b dE
. }j e+ [[[(0a+ pi#b + pifo + powd + puas + pur() dedydz =0.
% Treating equation (5) in the same way, we obtain '
g g cq y
& %I; - f f f (pta + pv*b + pwic + pvwd + puwB + puvC) dudydz = 0.
: ; And therefore, there being no external forces, %—f—= - ofilg , i

or the kinetic energy of stream motion can increase or diminish
only at the expense of molecular energy.

e
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122. Let us now write
3p = pﬂé + p¥ + pu,
F=(p—pu)a+(p—p?)b+(p-pud)c
— pvird. — B — pinC.
By a further use of the fundamental equation, putting
q=(u+ ) and then g=v+ 5 x w+ & we find
F- o5 (0= 6P+ (o= g+ (0 — ooy
+2 (prw)? + 2 (puw)® + 2 (puv)?}.

And finally
ar
2 —-~~ _fff(ﬁ'-pe)dwdydz
' B df  dn  df
where 6-a+b+c—-~d +dJ da"

123. It appcars then that &, the molecular or heat encrgy,
gains or loses at the expense of the energy of strecam motion,
according to the law of encounters “loi des chocs moléculaires.”
If, that is, ag tho result of encounters the tangential pressures
arc increasing, & diminishes, and K increases. Now this is
precisely what happens according to Chap. V. ante, when,
for instance, instead of being material points, the molecules
become elastic spheres of finite diameter. As the result of
collisions in that case £ in my notation becomes £2+ £, &ec.
And as we have seen, Art. 105, (ay)?, (aB )3, and (By)? increase,
but only up to a certain point, at which namely the ratio £72/£2
has the proper value for stationary motion. The relation
between the cnergy of visible motion X and that of molecular
motion K is in Natanson’s theorem the same as that between
K and heat in Thermodynamies.

Messrs Bryan and Boltzmann’s method.

124. In order to confirm the hypothesis that the temperature
of a gas or other substance is proportional to the mean kinetic
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energy of its molecules, Messrs Bryan and Boltzmann (Vienna
Sitzungsberichte math. naturw. Classe, Band IIL, Abtheil II.
Dec. 1894, also referred to by Boltzmann, Gastheorie, p. 136, et
seq.) treat the following case. X and Y are two infinite parallel
planes. In the space S, to the left of X is a gas A. In the
space S, to the right of ¥ another gas B. In the space S
between X and Y there acts on molecules of gas A a force
directed from ¥ whose potential becomes infinite on Y, and
there acts on molecules of gas B a force directed from X whose
potential becomes infinite on X. These conditions insure that
no molecule of gas 4 will be found in S,, and no molecule of gas
B will be found in S,. But in the space S there will be a
mixture of 4 and B, and encounters will take place between
their respective molecules.

Messre Bryan and Boltzmann use generalised coordinates,
but it will be sufficient in this notice to deal only with velocities
of translation, as though both 4 and B molecules were elastic
spheres.

It is assumed that the mean kinetic energy of A molecules
at any point within S is the same as their mean kinetic energy
within S;, and that the mean kinetic energy of B molecules
within S is the same as their mean kinetic energy within S,.

It is assumed further that as the result of encounters taking
place within S, between 4 and B, the molecules of 4 acquire, if
they have it not already, the same mean kinetic energy as those
of B. That result seems to me to be questionable or to be only
approximately true, if the molecules have finite diameters or
spheres of action. But I state this with diffidence when such
authorities are against me.

Making however these two assumptions, the conclusion
follows that the mean kinetic energy for the 4 molecules in 8,
must become equal to that of the B molecules in S,. And
therefore that if the mean kinetic energy be originally different
for 4 and for B, a finite quantity of energy will pass from S, to
S;, or vice versa. )

The condition that no energy shall pass is that the mean
kinetic energy shall be the same for 4 as for B. But we may

e
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regard the two gases as two bodies in contact, which condition
is more nearly realised as S is diminished indefinitely. The
known experimental condition that no energy shall pass between
two bodies in contact is that both shall be at the same tempera-
ture. Hence in the case of the two gases at all events kinetic
energy plays the same part as temperature,

Professor J. J. Thomsow's method.

125. The same hypothesis is tested in a different way by
Professor J. J. Thomson (Application of Dynamics to Physics and
Chemistry, p. 91). He puts the following case. Suppose a tube in
which is moveable a piston of very great mass M. On one side
of it is a set 4 of material particles each of mass m, in motion.
On the other side a set B of material particles each of mass m,in
motion. Considering the two systems of particles as two sub-
stances, and the piston as a conductor of heat, the condition
that no heat shall pass through the piston from one substance
to the other is that the two substances shall be at the same
temperature. If temperature be represented by kinetic energy
of translation, then the condition that neither set of particles
shall on average either lose or gain cnergy by collisions with
the piston ought to be that the mean kinetic energy of transla-
tion is the same for the 4 as for the B set. ‘

Let U be the velocity of the piston, u, the velocity
normal to the surface of the piston of a particle m, before
impact. It is assumed that particles striking the piston re-
bound from it as perfectly clastic bodies. Let U’, w’ denote
the values which U, «, assume after impact. Then we have

my + MU =mu,’ + MU,
mlulg + MU“ = mlullg + MUIQ.
From which deduce

2 — 4 Mm, (M — Un, — 4 Mmy2u,?
my (llq,2 — ) = A, U — & m2§w+ /m':';;) = s (a)

Now add together the equations of this form for all collisions
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which take place in unit of time. Let IV, be the number of
such collisions. Also let § =4M U? be the kinetic energy of the
piston, and @, the mean kinetic energy of the particles of the
set A which strike the piston. As I understand Professor
Thomson, the mean is taken for all collisions, not for all
particles.

It is assumed that the velocity U of the piston is zero
on average of time, because the piston is being struck on the
other side by particles of the B set and the pressure is supposed
to be the same on either side. Hence we may neglect in the
expression (a) the term which contains U in the first degree.

The expression then takes the form

2Mmy ).

Nlael S Nl (20 - §01)(M+ ml)a

Nore. This should, I think, be 36, instead of 36, because as M U2=26,
80 mu,2=%6,, 6, denoting the whole mean kinetic energy of all molecules
which collide with the piston or with other portions of the elastic surface
bounding the 4 molecules, .e.

26, =my (4 + 02 +w?).

But this does not affect Professor Thomson’s argument.

Similarly for the B set we have

_ 2Mm,
N,06,= N, (20 — 16,) DL tmy (2),
and since 06 = — N,00, — NV,00, = 0 on average
2Mm, 2Mm,
N, m(20—§01)+N2m2 (20— -}9,) =0.

: Nym. Nim
If =37 - 171

T+ my A +my

 This gives 20— 36, = a“ﬂ 3 (6,— 6),

b
20— 36, = —~ 1 (6: - b))
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Substituting in (1) and (2)

9Mab
61 = mb-—)- (02 - 61),
2Mab
392 = m (62 - 91),
and therefore 00, =00,=0, if 6,=206,.

It follows that if 6, > 6, the effect of all the collisions is
to increase 6, at the expense of 6,, and. vice versa. And the
condition that no energy shall pass from .4 to B or from B to 4
is that 6,=6,, or the mean kinetic energy of translation for all
particles colliding with the piston is the same for 4 as for B.

126. Now let f(u) du be the number per unit of volume of
particles of the A set whose velocities normal to the piston lie
between % and w+du. Then the number of such particles

which strike the piston per unit of area and time is f S (@) udu.
0
The sum of the kinetic energies of their motion normal to the

piston is ¥m, f f(w)udu. The mean kinetic energy of motion
0

normal to the piston for all 4 particles irrespective of their

striking the piston is 4m, f J(u) w*du. Let f(u) be so chosen
0
that the ratio

‘ f:f(u)u”du f:f(u)u”du
f:f(u)udu . f:f(u)du

)

is an absolute constant, and therefore the same for A as for B.
That being the case, when 6, =6,, or the mean kinetic energy
per collision is the same for 4 as for B, the mean kinetic energy
per particle is also the same for A as for B. And therefore the
condition that on the whole there shall be no transfer of energy
through the piston from 4 to B or wice versa is that the mean
kinetic energy per particle is the same for 4 as for B.
B. 9
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127. If we assume for 4 particles
S () = Chemhmnd,
and for B particles  f(uy) = Cpehmavs®,
we satisfy the condition.

Possibly there may be other forms of f(u) which satisfy it.
But however this may be, some assumption with regard to the
relative frequency of different values of u appears to be necessary.

Further, f(u) being properly chosen, we satisfy at the same
time the two conditions (1) that the pressure shall be the same
on either side of the piston, the number of particles per unit of
volume being the same for 4 as for B, and (2) that there shall
be no transfer of energy.

The law of distribution of velocities thus appears to be
of the essence of the matter, if the molecular motion is to

represent heat.

The Second Law of Thermodynamics.

128. Our gas system being in stationary motion according
to the laws above investigated, we might impart to it a certain
quantity of heat 8&. That being done, it would assume a new
form of stationary motion, in which the mean kinetic energy 7',
the volume o, and the mean potential energy y, will be gener-
ally different from what they were in the original motion. If
P be the external pressure which in the original motion was
just sufficient to prevent expansion, the change of volume dw
can be effected only by doing an amount of work Pdw against
the external force P. A part of the energy 0 supplied to the
system is spent in doing this work. The remainder is spent in
increasing either (1) the mean kinetic energy 7, or (2) the
mean potential energy, 7—6» of the intermolecular forces, so that

0E =0T + 9 + Pdw, A being the number of molecules.

129. If the external forces P also have a potential, there is
in general a determinate relation between 0w and 97, and a
determinate relation between dw and 9y. So that in this case
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there is only one independent variable, and no question can
arise whether or not Qj,lf-] is a complete differential. Any theorem

proved on the hypothesis of P having a potential is not the
Second law of Thermodynamics as usually understood.

But the external force P is in Professor Thomson’s language
a “controllable” force. It is possible therefore by suitably
varying P to maintain the system in stationary motion with
any arbitrarily assigned values of 7 and . But 97 and
0o being given, 9y is determinate. There are then, P being
-controllable, two independent variables. It is convenient to
use P and o for independent variables.

130. If in rectangular coordinates the abscissa represents
o, and the ordinate represents P, any point in the diagram
represents a determinate state of the system, in which it is in
stationary motion with the values of P and w corresponding to
the point, it being understood that the controllable force P is to
have such value given to it as will be necessary to maintain
that motion stationary. So also any curve drawn on the plane
of the diagram represents a series of states through which the
system might be made to pass successively, P being made to
vary as required. But it is understood that the change of
state, that is the passage from one point in the curve to
another, is effected so slowly that stationary motion is always
attained, and therefore the kinetic energy corresponding to the
controllable coordinate w-is for our purpose to be taken as zero.

If the curve be a closed curve, the system having passed
through all the states denoted by the curve, has at the end
of the process the same values of P and o, and is therefore
for all experimental purposes in the same condition as it was
at the beginning. Contemplating the system itself alone,
nothing that we can observe by experiment has happened to it.
Now if @ denote the absolute temperature, the second law of

Thermodynamics asserts that in this complete cycle f %'—_-o,

or QOE is a complete differential of some function of  and w.

9—2
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That function was called by some writers the Thermodynamic
Junction, by others the Entropy of the system.

131. As T have said, 8_;_13_' being a complete differential, no

change takes place in the system itself as the result of any

complete cycle of operations of the kind described. But f 0E+0,

and fPBau}:O. Generally a quantity of heat denoted by faE,
drawn from some external source, has been cony'erted into
mechanical work fPaw outside of the system, and a further

quantity has been transferred from a hotter to a colder external
body, as shown in treatises on Thermodynamics. But if our
system be enclosed in a non-conducting envelope, so that no
heat or other form of energy is allowed to pass into it from
without, or out of it into external space, it may by suitably
varying the controllable P be made to expand or be compressed,
and in so doing it does external work, positive in case of
expansion, negative in case of compression. This work is done
at the expense either of the absolute temperature @ or of the
potential x of the system itself. The line traced on the
diagram in such a process, a line that is for which 9£=0, is
called an adiabatic line. If the cycle be A BCD on the diagram,
A B denoting expansion at constant absolute temperature 6, BC
adiabatic, CD compression at constant absolute temperature &',
and DA adiabatic, it is found that the heat which must be
supplied from without to effect the expansion AB is to the
heat withdrawn during the compression CD, both ‘measured in
mechanical units, as 6: 6. If temperature is represented by

the kinetic energy, we ought to find 7': 7V :: 6 : €, or EZ—E,—' is
a complete differential. A
132. In the Philosophical Magazine, January, 1876, a
proof of this proposition was given by the present writer.
This was employed afterwards in an improved form by

Dr Watson in his Kinetic Theory of Gases, and has been
accepted by Professor Bryan. It was founded, as will be seen,
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on Boltzmann’s theorem, that the chance of a group of A
molecules having their coordinates between the limits
z, ... %+ da,,

(in which position their potential is ) is proportional to
e dgdy, ... daa.

This is established only on the assumption of condition A.
[ will here give that proof of the second law in order that we
may subsequently see what modifications are required in it
when we abandon condition A, and employ the more general
method of this work. I here use % instead of 2k of Art. 44.

We have 0E =M\oT + 9 + Pow.
Let T= % = the mean kinetic energy of a molecule.
1 _2h
Then =73
oE . 2h 2h —  2h
and T=K§—8T+§Bx+-3—f’aw ............... (I)

Now substitute for Pdew from Clausius’ equation, Art. 24,

3Pow = Sim (u? +v* +w?) + 332 Rr,
or Pow = 3Zm (u* + v* + w?) aﬂ? +3S5Rr %’a—’ .

Now if there be a general cubical expansion,  becoming
® + 0w, every line r in the system becomes

7+ étfr
T
0w
or ar_—gz)—'r.

Therefore the last equation becomes

Pio = §Zm (v +v* + w’)%? + 35 Ror.
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Again, for cach configuration \

SRy =~y =~ X o,

Heneo taking mean values

SY ROy - j?‘g dw.

dy . . . . . d .
Hero (lig is the mean for all configurations of dz’ that is

the mean of a variation, whilo 9y is the variation of a mean.

N d - .
The distinetion between oy and (lg dw 15 of the essence of the
watter.
Again,
A dw

\ 3 v 1]
N (P 4 0?2 4w
32 ( ) “hw

if A be the numbor of molecules of tlm systom.

We have then
P = A am (lx

ho deo 0w,
and 21' 1’6 = H?\.aw 2h dy lo.
3 dw

And therefore
on Zh o

; = o 2h dx 20

7 X+ =5 Ko (11).

133. So far our equation is derived from physical con-
siderations.

Now consider the auxiliary function

+ o0
= logff[ ehx da,...dz).

du du

Then 0w = dh oh + Jo 0 o, )_
and fﬂ_ . aff[ ~hX da, ... day
=—xok,
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because, since the chance of the configuration , ... 2y is

G-AX (L’(/’l CERY (lZ)‘,
evidently

X-—-fff—— ¢ M oxdu, ... dey —:-ﬁfe"hx day. .. dzy.
. du
' —=— —k, X
Again, do o f// " dbb fff X }b dw,

[ffenan.

the last term being necessary boecause every element of length

Q,

2

ff D (das .. da),

dw, ... is increased in the ratio 1: l.+A§£«’ by the general

cubical expansion above mentioned.

That is j-"f 2o =—h X0+ 0,
%) dw %)
because A(da, ... dz)) =\ aa‘:’ ,
: e o, 0 N0
and ou=—xoh—h bt ,
gy O® d . -, .
or N " §h do 0w = §ou + §x0h......... (I1X).

Substitute this in (II), and we have

?):7 =0 log T+ 49 (hx) + §0u,

which is a complete differential.

134. Let us now consider what modification has to be made
in the above proof when @, instead of being the sum of squares
of the velocities, has the value given to it in this treatise.

With the form of @ containing the b coefficients, the
relative frequency of the several configurations is different
from what it was when @ was a sum of squares only, but the

—
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, \ . . . .
values of ¢ and dx are not altered for any given configuration.
)

d , ,
Hence y¢ and .X have different values from those which thoy

dy
had in the former ease, x and da X are the same s in the former

l I;
case. Also I'= =g
Nevertheless bho physlcu,l equation
OB =NT 4+ 0%+ P00 «cocrevnrnnnnnnn. (I

remainy unchanged in form with the altered value of .
Further when we substitute Clausius’ expression (Art. 24) for
DPYw, the equation

a}f—xalogT+£,—') - Wy ...
1 3 do
r(.mnum unchanged in form with the altorod values of hy X

and X

Now let us considor the auxiliary function v, We might
in the proof above given have put it in the form

Y
A
w = log f f f (:_) e h PR dp L danday .. diya.

In our present problem it would then take the form

u-—-logfff "‘X( > VDe M da, .. . daday ... dya

=log f f ""( ) VD eMdsde,

where ds stands for da, ...dz\ and do for da,...dyr. Then
I and o arc the two independent variables. Let

A
-
(ZL-> VD¢ R=F.
.
Then 8u—g’t‘, o + g %0,

B



x.]

TIERMODYNAMIUAL RELATIONS. 137
Now g}é o
fmzﬁ%mww%w»%ww
o H I;X d77 dsda
f f % Fdado
ff KX QN l,dqdo- ...... (1.

- 5&8}»’ -+ f f ..h'x Fds(lff

Again Z%: dw
=00 . ff 'y (Fd (h'x) - ——) dsda,

f f ~tix Fdsdo

f f -k Bdsdo

the last torm roferring to the variations of all the olements of
length da, dy J, dz, consoquent on the oxpansion denoted by Ow.

f f —iex p RO

That is d;) Yo
fesonaae V7 (e

ow

(0]

=A% Xow
J' f wh'x (M dsdo‘ .....................
f f ~Wx Fdsda
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Adding together (1) and (2) wo find
o= — 0 — I fxawﬂ"

, db ‘M) dsde.

+ j/e Exton' o, t dw
f f € Wx Fdsdeo ( ak deo

R W
But now f Fdo =" g I8 constant whatever be the values

of h and @ or A" and @, It i thorefore not affected by the
variations of A’ and w.
, These variations affect neither the quantitios a ... v, nor
the limits of the de integration.
We have then
oK
71
a result of procisoly the same form as in the former caso.

= log T+ 30 (A'x) + 30w,

185. In any case in which
oy = lx dw,

the proof of the second law for the two indepondont variables 7'
and o can be presented in a simplo form,

For wo have in that case from [T

?)11’ = M) log 1"+ g)»

8
Now let i=;’,k, that is ¢ iy tho time in which a purticle

moving with the velocity of moean square would doscribe a
distance proportional to the lincar dimensions of tho system.

Then 40 log 0 =20 log v +0log 7',
and therefore - )
. \ e
-T-=7\310g T+§)~~g’
= 270 log (:7').
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We might define A2:T" as the Action of the system par exeel-
lenco. With that dofinition the Action is the same for all
states of tho system defined by 04 = 0, that is for all states of
the system on the same adiabatic line. And we may say that
the thermodynamic function ¢, (7)’11::/ = D¢>> cither is, or is propor-

tienal to, the Action.

136. But oy =:f§ dw cannot exist for any system such as

we have treated as a gas, oxcopt for a so-called perfeet gas in
which a4 =0. If there be a potential ¢ at all, the relative
frequency of different configurations of the molecules must
generally vary when 7' varies.  And thorefore although for any
configuration the change of x ay @ varies is independent of 7',
yet the moean of all values of x will not bo independent of
7', because the variation of 7' causes some configurations, t.e.
somo values, to bo represented with groator, and others with
loss froquoncy.  Wo may for instance conceive a case in which
the moleculos placed at equal distances from cach othor would
exert no sensible forees on cach othor by reason of their
distances, and so x = 0. If we sot thom in motion they will

in some casios approach so near to cach other that = 0.

187.  Professor J. J. Thomson in the work above referred
to gives a proof, not, as he says, of the second law of Thermo-
dynamics, but of a proposition analogous thereto. He does not

confine himself to the two variables 7' and o, but employs 7'

with any number of controllable coordinates ¢. Then he
assumos that the mean potential energy y, or in his notation
V, is completely fixed by the controllable coordinates, that is,
is not a function of T. That restriction prevents Professor
Thomson’s proof from being applicable to gases, as a proof that

. . .
?)ZI: s a function of temperature and volume, except in the
limiting case of a perfect gas in which V is non-existent. Nor
does Professor Thomson propose to apply it to such cases.
It may well be that in the more general class of problems

k
1
i
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treated of in his work the condition that V shall be a function
of the controllable coordinates is not a serious restriction.

138. The following is another form of solution of this
problem. Let there be, instead of the one controllable coordi-
nate w, any number of them as w, ... @,. We will now use ©
as a type controllable coordinate. It is assumed that the rate
of change of any w with the time is so slow that we may leave
the velocities @, ..., out of account. Let V...V, be the
generalised components of momentum corresponding t0 @;... .
Then it is a characteristic of the stationary motion that every

V. .
%5 is zero. And therefore if p,...p, be the components of
external force required to maintain the motion stationary

_dT dy
P=g = for each w,

by Lagrange’s equations. See Art. 24.

Generally let F be the function denoting frequency, that is
F is a function of the coordinates ;... z,, and the velocities
0 ...vn, of the molecules of the system such that the time
during which on average of any very long time, they lie between
the limits

...............

Yn oo Yn+ d’)’n,
is Fdw, ... dzyda, ... drys, or as we may write for brevity Fdsdo.

Then the mean value of any function as x is

x=[[ xFasds / [[ Fasa,

g_%=ff% Fdsdo /f Fdsdo, &.

And o= f f (x3F + Foy) dsdo / f Fdsdo.
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In the same ease wo have, if 7 represent the kinetic energy
in any particulm' stato, 7' the moean value of =,

"= f f rFHdsde,

o1'= [[ sodsdo + [| Fordsic
= [[rorasio + [ [ 74T dodsio
189. Lot us at this point assume the function F' to bo a

product of two functions, K= /f’, whero f is a funct.mn of the
coordinates only.  In that case wo have also

X = f xX.JSds / f JSds,
o= { [xorits+ | o ?)wdﬁ} [ 7.
or ax — dx ')u—fx’()fdu/ff(lﬂ

And now
0K =0T +0x + plw

oty - P 0T
= 0T +0x dwam+dm8w

= 20T +f xofds — f f ToFdsdo,

because dr 0w = f f F (‘lzawdsdor
dw dw
= F)'I'-—ﬂ‘q'?)}"dsdo',
therefore
O — 90 log 7 +2 [ %, 0pds - - [[ =X ordsde.

And now wo make QT{ a completo differential by assuming

o). r=v(3)

where ¢ and 4 are any functional symbols.

B

3 O

L
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A solution of these equations is
F=(Cghxin, fa= (e,
where €, ¢ are the known constants,

This solution is tho one we should take under the assumption
of condition A.  Another solution is

S= e, = (g e KT = (Johuxg=hQ,

if Q =pT. 'This is tho solution corresponding to Chap. VIII,

The subject of the Second Law of Thermodynamics has
; been very fully investigated by Professor (X H. Bryan in his
Report on the present state of our knowledge of Thermo-
! dynamies, Part IL, British Association, 1804
)
;J
{
{
’?
4
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APPENDIX.

MATHEMATICAL PROPOSITIONS,

IN tho preceding chapters I have assumed without proof
certain propositions relating chicfly to determinants.  They are
for the most part very simplo, but ag somoe readers may think
thoy require proof, I will devote this chaptor to proving them.
I shall require to mako use of the following clementary
property of determinants,  If cach of the constituents in one
row ig equal to the corresponding constituent, in a second row
multiplied by a constant factor, tho determinant is zoro.  The
two rows for which this s the case are said to be similar.
Whatever general proposition is proved of rows is of course
oqually true of columns,

(@) Lot us take for a type doterminant of ## constituents

D = ("uy ("u;-‘- ("mn

y ! )]
(“.!l' (‘-,m (".m:

v v v
('tm (’uu “en ('un.s

in which (), is the constituent (whatever its value) in the pth
row and gth column, and (!, is not necessarily oqual to Oy, &e.
This can bo made to reprosent any given doterminant by
assigning proper values to the constituents C.

Lot Dypq denote the minor of D formed by omitting the pth
row and ¢th column, that is by striking out Oy, and the row
and column in which it is; Dy, tho minor formed by omitting
Cp Tn the determinant or any of its minors the diagonal

Toms e

I P L T,
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144 KINETIC THEORY OF GASES. [APPENDIX.

from the first constituent in the top row to the last in the
bottom row shall be called the aars, and its constituents azial
constrtuents.

(0) The sign of D,, shall be such that
D=CyDy+CuDy+ ... +CyD,,
= m’ o+ OmDus+ et Own-Dm»
= &e.

In order that this may be the case, we must in forming
any minor D, apply the following rule of signs, namely to the
product of all the axial constituents of that minor the positive
or negative sign is to be attributed according as p +¢ is oven
or odd, and we deduce therefrom the sign of the product of any
othor set of constituents of the minor according to the usual
rale in expanding determinants. In like manner D, shall
denote the minor formed by omitting @, and €, and the rows
and columns in which they ave. [t follows from the above
convention concerning signs that

R
nl) = -\-4 X (”7:4[1)1'41-
» lg-
. dl)
Then ovidently - =% = D, whatever values p and ¢ ma
d(/',,[ » 1
a5

have.

(¢) Now consider the new determinant,
D= 0=0bm, Cy—0a,... O,—0um,,
On— 0w, Cpy— Oy ... Opy— Oy,

Co=0n,, Cra—0n, ... Criy— By,

If all the C’s in any two rows, as the pth and gth, were zero,
D' would be zero, becauso the pth and ¢th rows would thon be
similar. It follows that every termn in D containg at least
n—1 C factors, and therefore that I containg no products of
any two or more of the new partial constituents 6z. For such
products necessarily enter in pairs cqual and of opposite sign,
as for instance 0,2,0,x, — 0,2,0,2,.

Therefore D'=D—336,z,D,,.

% I.!“.‘-ﬁbﬁ f". UERN 5
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(@)  Now form a new determinant of (n+ 1)? constituents
by adding to D) an (n+ 1)th row and (n + Dth column. The
(n 4 1)th row shall bo

Bony Bains - Buiyn, 2an 1,
and the (n+ Dth column shall be symmotrical with it, contain-
ing Biwn in the first row, B4y in tho second, and so on,
Also Tet B, = B,y for all values of p and q.
Let A be that new detorminant, namely

¥ ¥ ]
(’nls ('mn-(’ma ﬁl (n-k1)

- 1 v v
A= (’un (’wa--- (’H‘Ih ﬁ:l(n»%n,

R P I S

(¢) Noxtin D' write

3
01“’1 - ﬂzl(uw) , glm” = /31 (n:-l) /31 (n+1)
sy 20ty 1
) )
. BB (n-41) /8 ) (-1 .
Bry = 9 ) (',7/"'41 = "t "‘I )ﬂq iy - &
(ypa Sy

Then wo have

1) = ) EE B;l (n‘}‘t) Bq (n11) D

N,
[ r

and by the ordinary expansion
A= = /) }v}-t/'}pm tn /‘3«, (4 0y I);u,'

T

Therefore =
Dt
(RN}

(/) T this last deduetion we have atbributed no particular
values to the (f constituents,

It would therefore hold for all the minors of 1) not eontain-
ing the suffix 24 1 asg woll as for 1) itsolf, nauncly

l '
), s
Ill 2"’”“Allv

Dy ="

ISI :“2”%“
Dy _ Ay
1y A’

Dy Ay .
= oA
B. 10

A

and therefore

et iy

s i

5
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(9) Now consider the function €@ in which A is any con-
stant, and ) is a quadratic function of » variables w,, u, ... Uy,

namely
Q =, + byiytty + yu? + &e.

Let us effect the integration

fe"“Q(l'rt,L between Hmits + o .

The terms in @ which contain 2, arc
Ut -+ (Dintty + Dagty + oo A Dy 5 gpy)

which may be put in the form
Oyntty + Dopty -+ &c.)‘-‘ _ g1ty = boyaty - &c.)“”

(un Va, + I
N
Lt us for a moment write
butty + byitey + &c. ,
2V,
L
Then [ e "edu,

= ¢~ hQ

e
f et anta?®  (y, W, + 2)
.

gl

i
Vi,

= ¢ "¢ multiplicd by a numerical factor,
: bin b
and Q= <a,, - 4"(’:7‘) 1+ ((),., - '2':&:‘) Uity + &c.
+ (u (-"‘”‘-2) 14, + &
vy 4‘(]’% [y .
Comparing these results with (e), (f) we see that if

I)= 2(,/‘, I)w, bm--.b,n,
by 204, Duge..Dy,

ssessescrmsaseetrrnne

D containing (n+ 1)* constituents,

by b binb.
1 by — (Y byy — N1nVsn

and D= 2""—‘.).7;"’ 9, ’ Ba,
2
by, — bmbm y 20, — bm

) een
2at,,

I containing n* constituents ;
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thon D' Dy Dy Dy

)/ A ) )

That i, these ratios are not altered by the change in the
cooflieients w,, by, &c., consequent on the integration accord-
ing to 1, HEvidently the same law holds for every subsequent
integration,  Let us then perform the intogrations

ff[ M duy ... du,,
and let the result bo

f f f € My, iy, = e HARE T Byt dgnt),

If ¢ # o't B b Ased) ly,dy, I8 proportional to the chance
that two variables %, and 2, shall lic between the limits

Uy on tty A ity for the one, and wy ..oy + duy for the other, we
cawily find the mean of «f, thus

(I f f g bt B b Aty Sy dl,,

the lmits of intogration boing for each w ¢ oo

. 24, _dy,
ThaAd,—~ By hd

if d be tho determinant
2An ”m '
B, 24,

dy Dy ‘ .
But: 0" D by the last article,
e D
oerfoop R n
Thorefore wl=
. . .1)'.‘
Similarly Mty =y

L

— Dy
Uy’ = h'
and 8o on.
10—2
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148 KINETIC THEORY OF GASES. [APPENDIX.

(h) TUnder the same circumstances to find the mean value

of d_S , OF 2a,u, + bigus + bygus + &c., u, being given (see Art. 97).
1 .

That is to effect the integration
f f f vty .. du, e (20, + bygus + &e.).

Let 2a,u; + bysus + bigus + &e. = P.

The coefficient of w, in P is twice the coefficient of u,* in Q.
The coefficient of every other u, as u,, in P is equal to the
coefficient of u,u, in Q.

After integrating according to u, the coefficient of u, in P

2 2
is 2a, — ;—2—:— while that. of %% in Q is a, — ‘lﬁ?" .
(g n
binbon

The coefficient of u, in P is b,, — S and the coefficient
n

of uu, in @ is the same.

The same relation between the coefficients in P and those
in @ which existed before integration according to wu, exists
also after that integration. The same rule holds for every
subsequent integration to w, inclusive. But when all the
integrations have been effected to u, inclusive, @ has become

D u,2. Therefore P has become P u, which i1s the mean
'-)I-Du T D n

value sought.

(?) Let us now consider the determinant

D=| 8, —fi8, —=£S, =£S ..
=f8, A+1D, fife  Sfife e
=18 fife ‘(1 +75s Sofss -
=18, fifss  Sffss A4S, ..

treated of in Chapter v, Art. 63. Here S is written for 2f
of that Article. '
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A .

Cornparing it with the typo determinant, wo find
Cu=N% Oy=14f8 CUu=14+f3 &,
Cy= Oy ==, &c., U= Oy = f1 S, &c.
Let i bo required to find the values of D and its first
minorﬁ-}-

(7> Weoobserve thatin D every row excopt the top row con-
tains ONv onsbibuent of the form L+ f% eg. the (p+ L)th row
contains L+/0 I il were fi# instoad of L+£,2 the (p + 1)th
FOW w o uld be similar to the top row and therefore 2 would be
Zzexo.

L£ we strike oub nny column other than the first, say the gth
columanx, we deprive the gth row of its constituent L+ £,
Hencce Uthe gth row is now similar to the top row.

Axnd i, to form a minor, we strike out any other row, neither
the first nor the gth, tho dotorminant, 4e. tho minor so formed,
is zero. Wosee then that if p> 1 and ¢ > 1, and p ¢, D,y =0.
But if we expand ), the constituent Cypy appears only in the
forma LUy, and Dy =0, Therefore 1) when expanded docs
not contain any anexinl constituent except thoso in the first
row or first column,

From (7) and () wo seo that D= 8% For the same rouson
2o == 4™, and Ko on for avery conxial mivor axeopt Ly, but as wo
shall scoae later D4,

(&) We have noxt o find Dy, Dy, & Striking out from
D the top row and second column to form £y, we find that in
D;o evesry row excopt the top row has ono constituent of the
form 1 7% Therofore by the sumo reasoning as in (j) and by
the rula a o the sign of the produet of the axial constituents,
Do = 1), =+ fi8.  When wo form Dy, the product of the axial
comstituents is by our ruls to be positive.  But in order to
reduce thiy minor to one in which tho top row does not
Comtain a constituent of thoe form 14,2, we must interchango
the two top rows, and thereby change the sign, of the minor.
Therafor Dyy= + f ¥ and so on. - In forming any minor I p we

AVe if’ p iy odd, an odd number of changes of sign.
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(§) Next let us deal with ;.

Let A=.D11= 1+f12: flj.zy j;_fa, e
flf2) 1+ﬁ2, f;f3,
fl.ﬁh fzfs, 1 +fs”,...

...........................

or Cu=1+f2 Cu=f1fs &c.

All products of the form f,2f;* evidently disappear in
expansion, and therefore all terms involving f? except in the
first degree disappear, and therefore

n—1
-D11=]-+ E fﬂ
1 .
=5 /2 if f=1.
1

(m) Again, if we strike out any column except the first, say
the second, we thereby deprive the second row of its constituent
1+ 72 And therefore if we now strike out the top row we
shall have

A12= f1fz, fgfs, f2f4,
flfs’ (1 +fsz), f3f4,
Hfo  Sfafe @+FD, ...

= — f, /> by the rule as to the sign of the axial constituents.
Similarly Dy =—f1fs.
Also A,=3f—f2,
Dy =32~ f3, &c.
(n) In the type determinant let now every C' become

'+ 00, and let all the 9C’s be small, so that we may neglect
products of them. That being the case

dD
8D=23—C— oC -

P

™M

mizn 4D
<A 0Cpq.
1g=1dCp 1

1]

p




Avre,) MATHEMATICAL PROPOSITIONS, 151

Lt us apply this to the dotorminant of (5) in which
() == N9 (= -—flb', (= -—f,S, &e.,
Op == f N, O 1 4 £8 &e.,
Hore as we have scon Jﬁ? =0, unless oither p=1, or ¢ =1,
or p . M
Thorefore
00 = Dy + fi800y + 800, + &e.
+ [N+ [Ny, + &e.
+ NS00y + 800y + &,
Now as in Art. 83 lot us mako
oty = (), 0y = §b,N, = §bm, &e.
Oy = 30, A0y = §b,,S, &,
0Cgym== by f1, 0y =5 = by, f, &e.
Then as products of the 'y are to be neglectod, we have
D)z by fON® A by foS? A Dy, fN? = &,
= Dy fIN? = by fuN? = &ec.
w (),

(o) Lot us treat Dy, or 4, in the sume way.,  Here

("u ER *'_/.lni 'y “fn./:; &,

Al\(‘ f)j)“ s DA,
A da
e ol 4 ot s,
(l(/’“d “"" (“"'md “+&(
And Ay = by fr, Uy m2 = by, £y, &e.,

A0y = § by = by fy — b f1), .
Therefore, sineo ench anaxial torm f, /y, &e. appears twice,
OA o (E./‘“ = fE) by ' = (7 = f) b fu = &c.
’""/1/.1 (['19 = bmfa - [’:mfx) "'fxfu (bla - bmfs - ('snfl) - &e.
== b fifs = b fiSa= oo = b S Sy
- }':f b (bmf 1 (’nﬂ.fu + &(5-)
+,/'lﬂbln./l +./'un[’uufu
'+,/ .u"('m/ ‘1 +./ 'n"bmf 1t ‘*’f ‘A’(’uuﬁ +f an()unf J + &
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That is 0A =—by SiSs—bufi Sy - &
= 500 )

In this result evory by, fo fq is to be counted once only, that
is, we do not distinguish by, from by, 1 by, fofo and by, £, fo
are counted separately, we must write

Ay N
0A = — § Xbmx4 S

2 =p-l "‘q-l

and this form is the one required in Art. 83.
(p) To prove that for certain vnhww)l'l) S o2l fy = 220

seo (33) of Art. 83, Let f(Art. 61)=; 1o When 7 > q.

Taking O for origin, lot p be any point Op =p.  About p
describe a sphere of radius o+ less than p, and let ¢ be a point

on its surface, If n4+2=1, or f= by the mean value of f; for

. ol . .
all points ¢ on the sphero is Up’ or fp.  And equation (33) iy
accurately satisfied, so long as » < p.

If o+ 2> 1, we have in usual notation
4 sin 6d6
0 h ‘ niy
(p*+ 14 = 2prcos 6) 2

_ 1L (p+ry=(p—2)
" 2npr (p*—1r)n

Jo=14

NP A s w;l? -2 P+ &

= npr (p* = a¥yr

1 n—1n— g m
_pm(]+ 2'3 )‘|+&(><l +p1+z)‘+&c>

2
= fp + terms containing £, multipliod by ;, &e.

And if now b= — (i)“, where u> 3,

% f dmrpldr = £y f derripbdr = f,25D,

- SR
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buentse, ;, boing negligible, all the terns in the integral which
follow the term /250 wee negligiblo comparad with £,/30,
(q) o find the condibion that the qradeatic funetion (y)
(0 ETITICE TN ST TAC S

shall be alwiys positive: whatover vadues be abtribated o
Upy ty oo iy,

Bvidently sinee e, mny beadl zero, o, must bo positive,
Similarly oy, ay, &, must be positive,

Also, given w,, (b minimum when

Y

Dttty v byt 4 b, | &oeo ),
‘i"“ ntta ity 'ty

Aud, when mininnn, @ wust be positive,  Substitute in @
for w, the value found for it feom
Dttty b bty 4 by, 4 &e, =0,

A byt

that is "y,
ity

L]
() then boeomes

g by v oo e? 4 e,

N ‘ ba'
whar ) = oy ol — &
P, T g, T
1 o - . iy
and every o must be positive,  Also by by - 2% &,
(ty

Prococding in the wune way @ is altimately redueed to
D -
vy st be positive,
Dy
. n - I
Similarly [, st he positive, and so on, - Therefore 1 and all
wh

its first conxind miners huve the sune sign, But if we only
reduce @ to a quadreatic funetion of w, and u,

Dy Dy D
= (TR S WUy 4 (T
Q=g 7 Dy WMty

D \ .
() = 2D wy, and an Lhin must boe positive
-7
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From which and the corresponding equations we sce that
all the sccond coaxinl minors have tho samoe sign as the first
coaxial minors, and thercefore the same sign as D.

Similarly we can prove that the third coaxial minors must
have the same sign as the second and so on, so that D and all
its coaxial minors must have tho same sign,  And this sign
must be positive because @y, a,, &c., are coaxial minors, This
is the required condition.

() Referring to Chapter v, in which it is proved that with
(r) spheres of finite diameter ¢,

AMuy L (dE | dEy
dt gmdp 2 (dz (la:) ’
where My ov M = [ f f dadydzary (gﬁ + :ﬁ) ,

to prove the same thing for

My = U] dadydzo? :ﬁE

. W’
1, . S
; Consider the space between two infinite planes a:= 0 and
h ., dE . * .
b @ = dw, between which df is supposed constant and negative.
Lot u=a—§ Then it is proved, as in Art. 64, that the numbaer
. per unit of volume of molecules for which a — £ lios batwoeen
- and w + du, when @ = (), exceeds tho corresponding number when
‘ @ = dx by the quantity
{ . d
i Ce W20/ u dE daxdu.
j i

Therefore the number which enter the space between the planes
exceeds the number which leave it per unit of timo by

. /1 df
i —hud, 7, v,
(o} fjclydze du2h o "

‘ Hence as in Art. 66, it follows that, for cach cloment of
i volume dedydz,
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4y = — ([ Cetrreret o mpardudn %
C-l—t(ua)——ff_wO'e € 2huaduda%

—_ dg
— w222 ==
w?a?2h Tn

Now u and a are not independent, as » and o were in
Art. 66. Hence

— 9% - 2% 3 3

V= o % Sk &R T aWeh
and 2h'uta? = 3
g dEdw dfda® _ 3 (@3)
Hence To d =de a5 =" \ge) e 1),
which corresponds to
at  df\d(ay) _ (0_7_5 9{{)’
(dz+dx) Tdt T dz ¥ dn
of Art. 66.
It follows, the motion being stationary, that
2 & dE_ ( i3
olt dz~ 2h olw)
or by the process of Art. 68
f —gy o 3 (IE
~aiZ=a)=o ( dw) ............... @).

When the material points are replaced by spheres of finite

diameter c, 0; 7 acquires a new term due to collisions, which we

will denote by %——:, and we have

Ve Vy, V., being the components of the half relative
velocity of two colliding spheres.
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Also a-gt =2mwcpV (\2—2A2) V3,
where AV=V,, V="V, V=V, .

and using the same notation as in Arts. 70—71, we find

%I% ___711- 2rc? V&hdgc Vs)gf defd¢2qmﬁcosﬁ

x (=Acos @+ V1 — N sin 6 cos @) (N2 (4 cos* 6 — 4 cos? B)
+ (1 =A%) sin? 20 cos? ¢’ — 2A V1 — A2 cos 26 sin 26 cos ¢’}

srspvetn S dE

whence introducing the factor Ce=V*V*dV where (= :/%"—T (27)3

and integrating from V=0to V=00,

we get Q;% —8— wc3p 21h gf’
déoV,® dEoa* _ 8 L (dE\® .
or % at El-‘;c a"t ']3 3 2}), (dw) ......... (-3).
We have next to caleulate the term
3 df
at dz’

due to collisions. That gives by the same method as that
employed in Art. 76

od 1 (T .
5285""; 27rc"pV~fod0fo d¢p2 sin 6 cos 6
X (—=ncos @41 —A2sin 0 cos ¢')
X (— 27&00520+'\/1—7\2s1n2€cos¢) f(r—a)

Whence we obtain for a pair of colhdmg spheres

adf e x. ldf _
L Ak LA AGRD
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and for cach wphere sopiratoly

o dE W22y
3 P P 1) TR AP
ot brepl 40 A vy (r--ut)
-4 dEyV
) by e

Adding thiv to () we find for the chunge of M, with the
time due to collisions

oMy B gy
R TR LY} (.1.:’

1 JE"""
2h {d‘r) '

H

Z'frt”p

Uning M, tor M,, oy

L dE 8k
* dt e 2 (cl.r)

oo VopedEy ”f’.ﬁ‘“"} SopdEny
bimep “h i(cl.r) f (:I.r ) P24 (n’\r) "

The seentnd enn b e seres by

Mo At 74, we Hl
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